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A question...

How do we design an optimization algorithm that respects the natural geometry of neural
networks?



A question...

How do we design an optimization algorithm that respects the natural geometry of neural
networks?

(in such a way that we guarantee effective learning across different model scales)



What has been done so far?



SGD is not a good choice

Stochastic Gradient Descent
(SGD):
@ SGD uses a Euclidean geometry:

Input: x0 € X, step sizes {7y},

: . 1
horizon n € N* X1 = argmin(gh,x — x¥) + 2 x B
for k=0,1,...,n—1do xERI Yk
Sample &k
gk = Vf&x ,€k) @ This geometry is not representative of the
X et = x* — gk problems we are interested in.
Output: x"

Two major improvements:

@ On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)

@ A priori adaptation: Methods designed with problem-specific geometry in mind
(Bregman methods, Riemannian optimization, P parameterizations, etc)



SGD is not a good choice

AdaGrad:

Input: x° € X, step size v, € > 0, @ AdaGrad uses a Mahalanobis geometry:
horizon n € N*

for k=0,1,...,n—1do P . p P 1 P
Sample &, x e argmin{g", x — x") + THX = x"[)2,6,
g -vithe) xews !
Gk = Gk—1+ (g .
Xkl 3k _ 2 o gk where ||x\|§7ck = (x, Gkx) is the squared
v Gite Mahalanobis norm.
Output: x"

@ On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)



SGD is not a good choice

RMSprop:
Input: x° € X, step size v, € > 0, ® RMSprop also uses a Mahalanobis geometry:
momentum 3 € (0,1), 1
ok _hgrilzon nf N’; o X1 e argmdin(gk,x - Xk> + ZHX - XkH;Gk
=0,1,...,n— €R
Sample &k )
g = Z(f;(x Jfrkzl AP where ||x|[3 ¢, = (x, Gix) is the squared
k+1 Xk 1 @gg Mahalanobis norm.
Gutputs x° \/@ @ Adds the momentum parameters.

© On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)



SGD is not a good choice

Adam:

Input: x0 € X, step size v, € > 0,
momentum 1, 32, horizon

ne N*
for k=0,1,...,n—1do ]
Sample &, o Simplified idea of Adam: RMSprop + 2nd
gk = VF(x* &) moment estimation.
m* = Bim* 1 4+ (1 — B1)gk . . .
vk = Bovk=1 4 (1 — B)(g%)? @ These methods are all still essentially Euclidean;
k= _m" their adaptivity comes from a Mahalanobis
1-pf norm.
ko _ vk
v = 17[35
)kl = sk — 0 o gk
\/\77+e
Output: x"

@ On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)



Shortcomings of ignoring architecture

Standard Practice

Training Loss
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log,LearningRate

Optimal learning rate shifts when we scale width.

@ Because it's on-the-fly, Adam takes more memory when we scale our network (we
have to keep track of + store the moments).



Failure of Adam to learn features as width scales

With standard parametrization (intialization + learning rate), we get stuck in the “lazy”
regime if we scale width.

On Lazy Training in Differentiable Programming
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Figure 1: PCA of Word2Vec embeddings of top US cities and states, for NTK, width-64, and width-oo
feature learning networks (Definition 5.1). NTK embeddings are essentially random, while cities and
states get naturally separated in embedding space as width increases in the feature learning regime.
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Model of a Neural Network

We consider an L-layer fully-connected neural network with input a € R” and output b € R:

A9 =a ARy =4 X RO, b= h(a) = AOREDCL)).

pre-activation g’

° x :=[Xi,X,..., Xt], X1 ER™*P, X, e R™*™, X; e R™*™ forall € {2,...,L—1}

@ m is the width of the network

[ [ o o 1
pet X2 X_L-1 XL
> hb=p
Output

Input

Hidden 1 Hidden L-1



Feature Learning

How should one update the weights during training for “good performance”?
Definition (Feature Learning)

Let AAY) denote the feature change after one iteration of training, for the jth layer. We
are in the feature learning regime if the following properties hold:

O ||V |rws = ©(1), VI € [L] (stable forward pass),
@ || A ||rms = ©(1), VI € [L] (bounded, nontrivial feature update),

. . 1
where the RMS norm is defined as || - ||rums 1= ﬁ” “l2
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Figure 1: PCA of Word2Vec embeddings of top US cities and states, for NTK, width-64, and width-co
feature learning networks (Definition 5.1). NTK embeddings are essentially random, while cities and
states get naturally separated in embedding space as width increases in the feature learning regime.



A priori adaptation via uP

Certain initialization & layerwise step size that is scaled by dimensions to ensure
@ the correct scaling behavior as the width goes to infinity (feature learning),

o that Adam/SGD has hyperparameter transfer for the global step size.

Their
Standard Practice Dt Work
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uP is architecture aware (different scaling depending on dimensions) - this is a priori
adaptation.



Spectral Conditions for Feature Learning

Definition (Spectral Condition)

Given an L-layer NN, consider applying a gradient update AX; to the weight matrix X;. If
the spectral norms of the weights and the weight updates satisfy the following

V2<I<L-1,
Xallo=© (VZ) 8% ]w=© (/%)

[ Xillop=© (1) [ AX[lop= © (1)
Xello=0 (VE)  18Xn=0 (v/Z)

then we have feature-learning.

e This spectral condition ensures that ||A{)||rms = ©(1) and ||AAD ||rms = ©(1).
@ This can be extended to rectangular matrices by requiring the norm of both objects to

scale like © ( M)

Nin

— we need to control scaled operator norms layer-by-layer in the network to ensure
feature learning as we scale width.



An architecture-aware norm for neural networks

Our strategy:

@ Cook up a noneuclidean norm based on the layerwise scaled operator norms.

@ Incorporate this noneuclidean norm into our optimization algorithm to have a priori
adaptation.
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Steepest Descent via Dual Norms

The update of SGD can be written

1
X = argmin(g", x — x*) + —|Ix — x"| 3.
27k

x€R
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Steepest Descent via Dual Norms

The update of Steepest Descent can be written

1
X = argmin(g", x — x*) + —|Ix — x*
27k

x€R

2
[

What if we change the norm?

*

This update has a closed-form solution using the dual norm || - |

k+1 _ _k K K
X=X+ g« Imo(g ™)
where Imo is the linear minimization oracle:

Imo(g*) € argmin(g”,s) = ~0lg"|.
seD

and D is the unit-ball for the norm || - ||.



Steepest Descent via Dual Norms

The update of Steepest Descent can be written

1
X = argmin(g", x — x*) + —|Ix — x*
27k

x€R

2
[

What if we change the norm?

This update has a closed-form solution using the dual norm || - |

X = X" 4 | g" |« Imo(g”)

where Imo is the linear minimization oracle:
Imo(g") € argmin(g”,s) = —a||g"||.
seD

and D is the unit-ball for the norm || - ||.

Key insight: If we can compute the linear minimization oracle, we can do optimization
with respect to a noneuclidean norm.



Linear Minimization Oracles

Given a norm || - ||, the
associated linear
minimization oracle (Imo)
gives back a direction least

aligned with its input,

Imo(g) € argmin (g, s).
{s: lIsll<1}

Imoy, (Vf(x))
Imoy,_(Vf(x))
Vf(x)

@ The Imo for the scaled e
ball is the scaled Imo
for the unit ball.

@ The Imo is ® X
scale-invariant: 0 BN Imoy, (Vfix))
Imo(ag) = Imo(g) for 15 B Moy (Vf(x))
all a > 0. I3 ., . Imo,,(Vf(x)

|
|
|




Examples of Linear Minimization Oracles

Linear Minimization Oracles (Imo) for Norm Balls
If D is the unit-ball associated to a norm || - |

then Imop(g) = —9||g||« where || - ||« is the dual norm.
Ball Linear Minimization Oracle (Imo)
£, Ball Imo(g) = — &
Dual Norm | Steepest Descent (—||gl|« Imo(g))

-1l =1+ 1l2

Steepest Descent in £>-norm recovers gradient descent/SGD.

~lel (-7 ) = ¢



Examples of Linear Minimization Oracles

Linear Minimization Oracles (Imo) for Norm Balls
If D is the unit-ball associated to a norm || - |

then lmop(g) = —0||g||« where || - ||« is the dual norm.
Ball Linear Minimization Oracle (Imo)
{so Ball Imo(g) = —sign(g)

Dual Norm Steepest Descent (—|/g]|« Imo(g))
-1l =11l | ~llgll: (~sign(g)) = (X, &) sign(g)

Steepest Descent in £°°-norm recovers sign descent.




Examples of Linear Minimization Oracles

Linear Minimization Oracles (Imo) for Norm Balls
If D is the unit-ball associated to a norm || - |

then Imop(g) = —3||g||« where || - ||« is the dual norm.
Ball Linear Minimization Oracle (Imo)
£, — £, Operator Norm Ball | Imo(g) = —UV" where g = ULV (reduced SVD)

Dual Norm Steepest Descent (—|/g|. Imo(g))
—llglse (~UVT) = (3, 0(e)) (UVT)

Steepest Descent in || - ||op recovers spectral descent/Muon.

[ M =1 e



LMOs for product sets

In the case where x = [X1,..., X;] and we want to assign a norm || - ||;; to each X; for
I € [L], we can take the max-norm,

x|l := max { |Xall {13, - - I Xell gy }
so that the Imo with respect to this norm is separable across the X;:

Imo(g) = Imo([g1,...,8]) = [lm(gl), e lm(gL)]

with each Imoy;; corresponding to the Imo over the ball induced by the norm || - |-



Conditional Gradient Algorithm

The conditional gradient algorithm
(also known as the Frank-Wolfe
algorithm) solves constrained
Vf(xi) S _
L.. ball optimization problems:

min f(x)

xeD

Conditional Gradient (CG):

Input: xp € D, step sizes {v«}
where v, € [0, 1], horizon

n e N*
for k=0,1,...,n—1do
xk+1 s¥ = Imo(V£(x¥))
® Vk:S —Xk
k+1 _ k
f xR = X+ kv
— ) Output: x"

B Imo(VA(xk) — xk
Imo(VF(x*)) ® Xci1




Conditional Gradient Algorithm

The conditional gradient algorithm
(also known as the Frank-Wolfe
algorithm) solves constrained
optimization problems:

min f(x)

xeD

Conditional Gradient (CG):

Input: xo € D, step sizes {4}
where 7, € [0, 1], horizon
n e N*
for k=0,1,...,n—1do
K k
s¥ = Imo(Vf(x
st = Imo(V (<)
XKL = g + vk
Output: x”"

® X
N V(xi)

B Imo(VA(xk) — xk
@ Xk+1

Imo(V#(x¥))
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Beyond steepest descent

Instead of Steepest Descent

1
XK = argmin(g", x — x*) + = |Ix — x"|?
27k

x€RY

which scales the update by ||V f(x¥)]

«, we can directly use
X = argmin(g®, x — x*) 4 1y, p(x — x¥)
xeRd
to get
X = xR ’yklmOD(Vf(xk)).

Related to Frank-Wolfe/Conditional Gradient and Generalized Matching Pursuit algorithms.



A Stochastic Conditional Gradient that uses Momentum

(Unconstrained) Stochastic Conditional Gradient (uSCG/SCG):

Input: x° € D, step sizes {74}, momentum {ay}, horizon n € N
Initialize d® = 0
for k=0,1,2,...n—1do

Sample &

gk = Vf(Xk,ﬁk)

dk = (1 — (kk)dk71 + Oékgk

sk = Imo(d*)

g ds uSCG
7] sk—xk scG
XK+ = xk vk

Output: X" selected uniformly at random among all iterates (for the analysis).

@ Momentum reduces variance in stochastic setting.

@ uSCG solves the problem IEJ-IR!L f(x) while SCG solves the problem Qig f(x) where D is
the unit ball of the norm.

@ The direction s* has fixed norm.

@ SCG is “just” uSCG with weight decay



Weight Decay and SCG

We know that Weight Decay should not simply be seen as Tikhonov regularization (Hutter
et al.).

GD with weight decay (decoupled): x*™ = (1 — \)x* — 4V (x¥)
GD on Tikhonov problem (coupled): x*™™ = x* — ~(V£(x*) + Ax¥)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better”).



Weight Decay and SCG

We know that Weight Decay should not simply be seen as Tikhonov regularization (Hutter
et al.).

GD with weight decay (decoupled): x**' = (1 — A\)x* — yVF(x¥)
GD on Tikhonov problem (coupled): x*™™ = x* — ~(V£(x*) + Ax¥)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better”).

In a noneuclidean setting, this point is critical because the Imo is nonlinear.
uSCG + weight decay — SCG:  x*™' = (1 — A\)x* — 4lmo(VF(x*))
= (1 = X)x* — Aimo(V£(x"))
v/A

uSCG on Tikhonov problem:  x**' = x* — yImo(Vf(x*) + Ax")



Weight Decay and SCG

We know that Weight Decay should not simply be seen as Tikhonov regularization (Hutter
et al.).

GD with weight decay (decoupled): x**' = (1 — A\)x* — yVF(x¥)
GD on Tikhonov problem (coupled): x*™™ = x* — ~(V£(x*) + Ax¥)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better”).
In a noneuclidean setting, this point is critical because the Imo is nonlinear.

uSCG + weight decay — SCG:  x*' = (1 — A)x* — vImo(VF(x"))
= (1= X)x* — Xmo(V£(x"))
v/A
uSCG on Tikhonov problem:  x*** = x* — v Imo(V(x*) + Ax¥)
The “correct” interpretation of Weight Decay in this context is that it transforms your

unconstrained optimizer into a constrained optimizer, with implicit radii that are dictated
by the chosen combination of step size v and Weight Decay !
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Picking a Norm and Initializations

@ If we can specify a norm || - ||a, for the input space and a norm || - ||, for the output
spaces of each layer of our network, then this induces an operator norm for each layer.
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@ We can specify a norm for the whole set of parameters by taking
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Picking a Norm and Initializations

@ If we can specify a norm || - ||a, for the input space and a norm || - ||, for the output
spaces of each layer of our network, then this induces an operator norm for each layer.

@ We can specify a norm for the whole set of parameters by taking

= Xl
[l rlg?gf{ll illai—p}

@ Spectral Feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.

— leads to a scaled £2 — ¢2 operator norm || - |lop on weight matrices:
_ din
1 X]|lrRMs—rMs = [ X1lop-
doul

The Imo associated to the ball for this norm is given by the scaled matrix sign

_ [ Gou gy T
din )



Picking a Norm and Initializations

@ If we can specify a norm || - ||a, for the input space and a norm || - ||, for the output
spaces of each layer of our network, then this induces an operator norm for each layer.

@ We can specify a norm for the whole set of parameters by taking

= Xl
[l rlg?gf{ll illai—p}

@ Spectral Feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.

— leads to a scaled £2 — ¢2 operator norm || - |lop on weight matrices:
d
1 X]|lrRMs—rMs = = (1 Xlop-
doul
The Imo associated to the ball for this norm is given by the scaled matrix sign

_ [ Gou gy T
din )

The first and final layers require more thought!



Norms for input layers

The operator norm chosen for the initial layer differs from the intermediary layers,
depending on the task (NLP, images, etc).

For language tasks, the input z is usually a 1-hot encoded vector so
[2lloe = llzll2 = llzll = 1

identically. This in turn means

WA ]|co—sruMs = [|Wh|l2—rms = || WA |l1—rMs

on this restricted domain.

Table 4. Example lmo choices for 1-hot encoded inputs.

Parameter W) (1-hot encoded input)
Norm 25 RMS | 1 —RMS [ 1o
LMO Vot UVT coli(W1) = vl [ast v sign(W7,)
Init. Semi-orthogonal | Column-wise normalized Gaussian | Random sign

(Note there is a sign error for Imo in this table)

For image domains, we use the RMS norm which gives the scaled operator norm for the
initial layer.



Norms for output layers

@ We have no restriction to bound the output in RMS norm; instead we consider
bounding the maximal entry using L.

@ We can bound [|Al[rms—o0 < = ||All1-00 Which gives us a scaled sign Imo for the last
layer.

Table 3. The choice of Imo can be different between layers and can depend on the assumptions on the input. For simplicity we overload
notation and write the reduced SVD as W, = U diag(o)V " € Ré%ut*4in forall £ € [L].

Parameter W1 (image domain) {Weleepa,...L-1 WL by
Norm RMS — RMS RMS — RMS RMS — RMS RMS — 1— 000 RMS
LMO | max(l, /Aeu/d)UVT | fAoufaaUVT | \fdoufaaUVT | row;(Wy) — ﬁ% 2 sign(W1) | s

Init. Semi-orthogonal Semi-orthogonal | Semi-orthogonal | Row-wise normalized Gaussian | Random sign 0

(Note there is a sign error for Imo in this table)



uSCION and SCION

We refer to the instantiation of uSCG and SCG using operator norms as UNCONSTRAINED
SCION and SCION respectively, which stands for

Stochastic Conditional gradlent with Operator Norms
SCION
We recommend the following norms (First layer — Intermediary layers — Last layer):
@ image domains:  Spectral — Spectral — Sign
e 1-hot input: ColNorm — Spectral — Sign
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Empirical Results

Validation Loss

3B NanoGPT Training

4.0

3.81

w
o

w
S

w
N

3.04

—#— Adam
—»— Muon
—— Scion

Unconstrained Scion

2.8

1000

2000 3000 4000 5000
Steps

Table 5. Validation loss on a 3B parameter GPT model.

Adam

Muon

UNCONSTRAINED SCION | SCION

3.024

2.909

2.882 2.890




Illustration of norm control: GPT Training

Let p be the radius of the set D that is used to define Imo. Both uSCG and SCG provide
control over the norm of the output X":

@ SCG Guarantees [|X"|| < p

n—1
@ uSCG Guarantees [|X"|| < p >
k=0

Unconstrained Scion Scion
25 25
— Layer1 — layer1
— Layer2 — layer2
— Layer3 —— Layer3
209 — Layer4a 20 —— Layerd
—— Layer5 — Layer5
Layer 6 Layer 6
Eis E1s
2 2
B K
@ @
& 10 &10
5 5
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps Steps



Hyperparameter Transfer: GPT Training

Adam Muon
4.0 4.0
38 38
36 36
9 °
S3a4 3.4 4
g
D32 32
K
3.07 width (Model Size) 3.0 Width (Model Size)
512 (64M) 512 (64M)
S8l — 768 (124M) 28 —— 768 (124M)
—— 1280 (300M) —— 1280 (300M)
—— 2560 (1B) —— 2560 (1B)
2.6 26
50 o o 20 2t 26 2716 o P 20 2%
Learning Rate Learning Rate
Unconstrained Scion Scion

Width (Model Size) -0 1 Width (Model Size)
512 (64M) 512 (64M)

284 — 768 (124M) 284 — 768(124M)

—— 1280 (300M) —— 1280 (300M)

—— 2560 (1B) —— 2560 (1B)
26 26

216 218 212 2710 28 2716 214 212 2710 276
Learning Rate Learning Rate



Different Norm Choices on First/Last Layer

Shallow (3 layers) GPT on Shakespeare dataset.

Scion (Sign — Spectral - Sign) Scion (Spectral - Spectral - Sign) Scion (ColNorm — Spectral - Sign)

Learning rate Learning rate Learning rate



Hyperparamet ransfer

Scion on CIFAR10

1.00
width-factor
0.95 05
— 1.0
— 2.0
0.90 2.0
> 0.85
o)
o
3
S 0.80
©
i
= 0.75 1
0.70 4
0.65
0.60 r . . . .

-8 -6 -4 -2 0
log, Learning Rate

Optimal step size transfer across width in a convolutional NN trained to classify with
CIFAR10.



Effect of batch size

Batchsize sensitivity on NanoGPT (124M). SCION is less sensitive to batch increases (for
a fixed token budget)

4.2 Method ok
=—ke=Adam
=p= Muon .
= Scion

401 Unconstrained Scion /
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Unconstrained Scion (epochs=8)

0 -88.2 87.4 86.6 858 84.9 840 831 825 816 803
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Tuning the momentum on CIFAR10

Unconstrained Scion (epochs=16)
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Motivation
Feature Learning and uP

Noneuclidean Optimization

(unconstrained) Stochastic Conditional Gradient

A natural geometry for neural networks

Empirical Results

Theoretical Results



Template Optimization Problem

To analyze the algorithm, we consider the class of problems
in f(x) := E¢[f
min f(x) == Ee[f(x, )]
where
@ X is either R? (unconstrained) or D (constrained), with
D= {x: x| < p}-

o E[f(-,&)] is Lipschitz-smooth with respect to some norm.

@ We have access to a stochastic first-order oracle V£(+, ) which is unbiased
Ee[VF(-, )] = V()
and has bounded variance

Ec[||VF(-, &) — V() |B] < o



Convergence Results for fixed «

Let p be the radius of the set D used in the lmo.

Theorem (Convergence rate for uSCG with constant «)

Let n € N* and let X" be the output of uSCG with o € (0,1) and constant step size
_ 1

qG = W Then,

X" ia
MWﬂ)MSO<wﬁ)

Theorem (Convergence rate for SCG with constant «)
Let n € N* and let X" be the output of SCG with oo € (0,1) and constant step size

N = \% Then, for all u € D,

"), x"—u L—p2 o
E[(VF(Z"), nsoﬁm+)

== convergence to a noise-dominated region given by o.



Convergence Results for vanishing o

Let p be the radius of the set D used in the Imo.

Theorem (Convergence rate for uSCG with vanishing o)

Let n € N* and let X" be the output of uSCG with a, = 1/\/F and constant step size
= _3_ Then
Y= a7 ,
=0 1 Lp
E[IVFI] < 0 (=5 + =)

nl/4 n3/4

Theorem (Convergence rate for SCG with vanishing au)

Let n € N* and let X" be the output of SCG with ax = 1/\/; and constant step size
N = m;%' Then, for all u € D,

IR e 1 Lp2
E[(VF(x"),x"—u)] <O (’11/4 + n3/4>

= convergence to a first-order critical point for either the unconstrained (uSCG) or the
constrained (SCG) problem.



Relationship to other Algorithms

Algorithm «@ Norm Imo Formula
Normalized SGD 1 Euclidean || - [ fﬁ

Normalized SGD with momentum | ]0,1] Euclidean || - |2 —ﬁ

SignSGD 1 Max-norm oo —sign(d)

Signum 0,1 Max-norm || - ||o —sign(d)

Muon* 0,1] | 2 — ¢ operator-norm || - lop | —UVT, d = UZVT

Our framework generalizes these algorithms through norm selection and momentum parameter.
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Paper

arXiv:2502.07529, also at ICML 2025 (Spotlight)

ar <1V > cs > arXivi2502.07529

Computer Science > Machine Learning
[submitted on 11 Feb 2025]

Training Deep Learning Models with Norm-Constrained LMOs
Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, Volkan Cevher

In this work, we study optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball. We propose a new stochastic family of algorithms that uses the
LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems. The resulting update rule unifies several
existing optimization methods under a single framework. Furthermore, we propose an explicit choice of norm for deep architectures, which, as a side benefit, leads to the
transferability of hyperparameters across model sizes. Experimentally, we demonstrate significant speedups on nanoGPT training without any reliance on Adam. The proposed
method is memory-efficient, requiring only one set of model weights and one set of gradients, which can be stored in half-precision.

Subjects: Machine Learning (cs.LG); Optimization and Control (math.OC)
Citeas:  arXiv:2502.07529 [es.LG]
(or arXiv:2502.07529v1 [¢s.LG] for this version)
htps://doi.org/10.48550/arXiv.2502.07529 @

Currently working on extensions as well :)



ALMOND for dessert

Averaged LMO directionNal Descent (ALMOND):

Input: x° € D, step sizes {7, }, momentum {a,}, horizon n € N
Initialize d® = 0
for k=0,1,2,...n—1do
gk = Vf(Xk,ﬁk)
d* = (1 — ay)d* =1 + axlmo(gk)
XKL = xk 45, gk
Output: X" selected uniformly at random among all iterates.

Not competitive empirically. Theoretically, can only show convergence to a noise
dominated region.



