
Training Deep Learning Models with Norm-Constrained LMOs

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio
Silveti-Falls, Volkan Cevher

Séminaire Palaisien - May 7th, 2025

1

Motivation

A question...

How do we design an optimization algorithm that respects the natural geometry of neural
networks?

(in such a way that we guarantee effective learning across different model scales)

2

Motivation

A question...

How do we design an optimization algorithm that respects the natural geometry of neural
networks?

(in such a way that we guarantee effective learning across different model scales)

2

Motivation

What has been done so far?

3

SGD is not a good choice

Stochastic Gradient Descent
(SGD):

Input: x0 ∈ X , step sizes {γk},
horizon n ∈ N∗

for k = 0, 1, . . . , n − 1 do
Sample ξk
gk = ∇f (xk , ξk)
xk+1 = xk − γkgk

Output: xn

SGD uses a Euclidean geometry:

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γk

∥x − x k∥2
2

This geometry is not representative of the
problems we are interested in.

Two major improvements:
1 On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,

Adam, AdamW)
2 A priori adaptation: Methods designed with problem-specific geometry in mind

(Bregman methods, Riemannian optimization, µP parameterizations, etc)

4

SGD is not a good choice

AdaGrad:

Input: x0 ∈ X , step size γ, ϵ > 0,
horizon n ∈ N∗

for k = 0, 1, . . . , n − 1 do
Sample ξk
gk = ∇f (xk , ξk)
Gk = Gk−1 + (gk)2

xk+1 = xk − γ√
Gk +ϵ

⊙ gk

Output: xn

AdaGrad uses a Mahalanobis geometry:

x k+1 ∈ argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γ

∥x − x k∥2
2,Gk

where ∥x∥2
2,Gk = ⟨x , Gkx⟩ is the squared

Mahalanobis norm.

Two major improvements:

1 On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)

2 A priori adaptation: Methods designed with problem-specific geometry in mind
(Bregman methods, Riemannian optimization, µP parameterizations, etc)

4

SGD is not a good choice

RMSprop:

Input: x0 ∈ X , step size γ, ϵ > 0,
momentum β ∈ (0, 1),
horizon n ∈ N∗

for k = 0, 1, . . . , n − 1 do
Sample ξk
gk = ∇f (xk , ξk)
Gk = βGk−1 + (1 − β)(gk)2

xk+1 = xk − γ√
Gk +ϵ

⊙ gk

Output: xn

RMSprop also uses a Mahalanobis geometry:

x k+1 ∈ argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γ

∥x − x k∥2
2,Gk

where ∥x∥2
2,Gk = ⟨x , Gkx⟩ is the squared

Mahalanobis norm.
Adds the momentum parameters.

Two major improvements:

1 On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)

2 A priori adaptation: Methods designed with problem-specific geometry in mind
(Bregman methods, Riemannian optimization, µP parameterizations, etc)

4

SGD is not a good choice

Adam:

Input: x0 ∈ X , step size γ, ϵ > 0,
momentum β1, β2, horizon
n ∈ N∗

for k = 0, 1, . . . , n − 1 do
Sample ξk
gk = ∇f (xk , ξk)
mk = β1mk−1 + (1 − β1)gk

vk = β2vk−1 + (1 − β2)(gk)2

m̂k = mk

1−βk
1

v̂k = vk

1−βk
2

xk+1 = xk − γ√
v̂k +ϵ

⊙ m̂k

Output: xn

Simplified idea of Adam: RMSprop + 2nd
moment estimation.
These methods are all still essentially Euclidean;
their adaptivity comes from a Mahalanobis
norm.

Two major improvements:

1 On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)

2 A priori adaptation: Methods designed with problem-specific geometry in mind
(Bregman methods, Riemannian optimization, µP parameterizations, etc)

4

Shortcomings of ignoring architecture

Optimal learning rate shifts when we scale width.

Because it’s on-the-fly, Adam takes more memory when we scale our network (we
have to keep track of + store the moments).

5

Failure of Adam to learn features as width scales

With standard parametrization (intialization + learning rate), we get stuck in the “lazy”
regime if we scale width.

6

Plan

Motivation
Feature Learning and µP
Noneuclidean Optimization
(unconstrained) Stochastic Conditional Gradient
A natural geometry for neural networks
Empirical Results
Theoretical Results

7

Model of a Neural Network

We consider an L-layer fully-connected neural network with input a ∈ Rp and output b ∈ R:

h(0) = a h(l)(h(l−1)) = σ


[

Xl

]h(l−1)


︸ ︷︷ ︸

pre-activation g l

, b = hx (a) = h(L)(h(L−1)(. . .)).

x := [X1, X2, . . . , XL], X1 ∈ Rm×p, XL ∈ R1×m, Xl ∈ Rm×m for all l ∈ {2, . . . , L − 1}
m is the width of the network

h(0)= a

Input

p

X₁
σ

h(1)

Hidden 1

m

X₂
σ

...
X_L-1

σ

h(L-1)

Hidden L-1

m

X_L

σ

h(L)= b

Output

1

8

Feature Learning

How should one update the weights during training for “good performance”?

Definition (Feature Learning)

Let ∆h(l) denote the feature change after one iteration of training, for the lth layer. We
are in the feature learning regime if the following properties hold:

1 ∥h(l)∥RMS = Θ(1), ∀l ∈ [L] (stable forward pass),
2 ∥∆h(l)∥RMS = Θ(1), ∀l ∈ [L] (bounded, nontrivial feature update),

where the RMS norm is defined as ∥ · ∥RMS := 1√
m ∥ · ∥2

9

A priori adaptation via µP

Certain initialization & layerwise step size that is scaled by dimensions to ensure
the correct scaling behavior as the width goes to infinity (feature learning),
that Adam/SGD has hyperparameter transfer for the global step size.

µP is architecture aware (different scaling depending on dimensions) - this is a priori
adaptation.

10

Spectral Conditions for Feature Learning

Definition (Spectral Condition)
Given an L-layer NN, consider applying a gradient update ∆Xl to the weight matrix Xl . If
the spectral norms of the weights and the weight updates satisfy the following
∀2 ≤ l ≤ L − 1,

∥X1∥op= Θ
(√ m

p

)
∥∆X1∥op= Θ

(√ m
p

)
∥Xl∥op= Θ (1) ∥∆Xl∥op= Θ (1)
∥XL∥op= Θ

(√
1
m

)
∥∆XL∥op= Θ

(√
1
m

)
then we have feature-learning.

This spectral condition ensures that ∥h(l)∥RMS = Θ(1) and ∥∆h(l)∥RMS = Θ(1).
This can be extended to rectangular matrices by requiring the norm of both objects to
scale like Θ

(√ nout
nin

)
.

=⇒ we need to control scaled operator norms layer-by-layer in the network to ensure
feature learning as we scale width.

11

An architecture-aware norm for neural networks

Our strategy:
1 Cook up a noneuclidean norm based on the layerwise scaled operator norms.
2 Incorporate this noneuclidean norm into our optimization algorithm to have a priori

adaptation.

12

Plan

Motivation
Feature Learning and µP
Noneuclidean Optimization
(unconstrained) Stochastic Conditional Gradient
A natural geometry for neural networks
Empirical Results
Theoretical Results

13

Steepest Descent via Dual Norms

The update of SGD can be written

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γk

∥x − x k∥2
2.

What if we change the

This update has a closed-form solution using the dual norm ∥ · ∥∗,

x k+1 = x k + γk∥gk∥∗ lmo(gk)

where lmo is the linear minimization oracle:

lmo(gk) ∈ argmin
s∈D

⟨gk , s⟩ = −∂∥gk∥∗

and D is the unit-ball for the norm ∥ · ∥.

Key insight: If we can compute the linear minimization oracle, we can do optimization
with respect to a noneuclidean norm.

14

Steepest Descent via Dual Norms

The update of SGD can be written

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γk

∥x − x k∥2
2.

What if we change the norm?

This update has a closed-form solution using the dual norm ∥ · ∥∗,

x k+1 = x k + γk∥gk∥∗ lmo(gk)

where lmo is the linear minimization oracle:

lmo(gk) ∈ argmin
s∈D

⟨gk , s⟩ = −∂∥gk∥∗

and D is the unit-ball for the norm ∥ · ∥.

Key insight: If we can compute the linear minimization oracle, we can do optimization
with respect to a noneuclidean norm.

14

Steepest Descent via Dual Norms

The update of Steepest Descent can be written

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γk

∥x − x k∥2.

What if we change the norm?

This update has a closed-form solution using the dual norm ∥ · ∥∗,

x k+1 = x k + γk∥gk∥∗ lmo(gk)

where lmo is the linear minimization oracle:

lmo(gk) ∈ argmin
s∈D

⟨gk , s⟩ = −∂∥gk∥∗

and D is the unit-ball for the norm ∥ · ∥.

Key insight: If we can compute the linear minimization oracle, we can do optimization
with respect to a noneuclidean norm.

14

Steepest Descent via Dual Norms

The update of Steepest Descent can be written

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γk

∥x − x k∥2.

What if we change the norm?

This update has a closed-form solution using the dual norm ∥ · ∥∗,

x k+1 = x k + γk∥gk∥∗ lmo(gk)

where lmo is the linear minimization oracle:

lmo(gk) ∈ argmin
s∈D

⟨gk , s⟩ = −∂∥gk∥∗

and D is the unit-ball for the norm ∥ · ∥.

Key insight: If we can compute the linear minimization oracle, we can do optimization
with respect to a noneuclidean norm.

14

Steepest Descent via Dual Norms

The update of Steepest Descent can be written

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γk

∥x − x k∥2.

What if we change the norm?

This update has a closed-form solution using the dual norm ∥ · ∥∗,

x k+1 = x k + γk∥gk∥∗ lmo(gk)

where lmo is the linear minimization oracle:

lmo(gk) ∈ argmin
s∈D

⟨gk , s⟩ = −∂∥gk∥∗

and D is the unit-ball for the norm ∥ · ∥.

Key insight: If we can compute the linear minimization oracle, we can do optimization
with respect to a noneuclidean norm.

14

Linear Minimization Oracles

Given a norm ∥ · ∥, the
associated linear
minimization oracle (lmo)
gives back a direction least
aligned with its input,

lmo(g) ∈ argmin
{s : ∥s∥≤1}

⟨g , s⟩.

The lmo is
scale-invariant:
lmo(ag) = lmo(g) for
all a > 0.
The lmo for the scaled
ball is the scaled lmo
for the unit ball.

1
3
2

2
3

f(x)

x
lmo 1(f(x))
lmo 3

2
(f(x))

lmo 2(f(x))
lmo 3(f(x))
lmo (f(x))

f(x)

15

Examples of Linear Minimization Oracles

Linear Minimization Oracles (lmo) for Norm Balls
If D is the unit-ball associated to a norm ∥ · ∥,

then lmoD(g) = −∂∥g∥∗ where ∥ · ∥∗ is the dual norm.

Ball Linear Minimization Oracle (lmo)
ℓ2 Ball lmo(g) = − g

∥g∥2
Dual Norm Steepest Descent (−∥g∥∗ lmo(g))

∥ · ∥∗ = ∥ · ∥2 −∥g∥2

(
− g

∥g∥2

)
= g

Steepest Descent in ℓ2-norm recovers gradient descent/SGD.

16

Examples of Linear Minimization Oracles

Linear Minimization Oracles (lmo) for Norm Balls
If D is the unit-ball associated to a norm ∥ · ∥,

then lmoD(g) = −∂∥g∥∗ where ∥ · ∥∗ is the dual norm.

Ball Linear Minimization Oracle (lmo)
ℓ∞ Ball lmo(g) = −sign(g)

Dual Norm Steepest Descent (−∥g∥∗ lmo(g))
∥ · ∥∗ = ∥ · ∥1 −∥g∥1 (−sign(g)) =

(∑
i gi

)
sign(g)

Steepest Descent in ℓ∞-norm recovers sign descent.

16

Examples of Linear Minimization Oracles

Linear Minimization Oracles (lmo) for Norm Balls
If D is the unit-ball associated to a norm ∥ · ∥,

then lmoD(g) = −∂∥g∥∗ where ∥ · ∥∗ is the dual norm.

Ball Linear Minimization Oracle (lmo)
ℓ2 → ℓ2 Operator Norm Ball lmo(g) = −UV T where g = UΣV T (reduced SVD)

Dual Norm Steepest Descent (−∥g∥∗ lmo(g))
∥ · ∥∗ = ∥ · ∥Nuc −∥g∥Nuc

(
−UV T)

=
(∑

i σi (g)
) (

UV T)
Steepest Descent in ∥ · ∥op recovers spectral descent/Muon.

16

LMOs for product sets

In the case where x = [X1, . . . , XL] and we want to assign a norm ∥ · ∥{l} to each Xl for
l ∈ [L], we can take the max-norm,

∥x∥ := max
{

∥X1∥{1}, . . . , ∥XL∥{L}
}

so that the lmo with respect to this norm is separable across the Xl :

lmo(g) = lmo([g1, . . . , gL]) = [lmo
{1}

(g1), . . . , lmo
{L}

(gL)]

with each lmo{l} corresponding to the lmo over the ball induced by the norm ∥ · ∥{l}.

17

Conditional Gradient Algorithm

xk + 1

 ball
f(xk)

lmo(f(xk))

xk

f(xk)
lmo(f(xk) xk

xk + 1

The conditional gradient algorithm
(also known as the Frank-Wolfe
algorithm) solves constrained
optimization problems:

min
x∈D

f (x)

Conditional Gradient (CG):

Input: x0 ∈ D, step sizes {γk}
where γk ∈ [0, 1], horizon
n ∈ N∗

for k = 0, 1, . . . , n − 1 do
sk = lmo(∇f (xk))
vk = sk − xk

xk+1 = xk + γkvk

Output: xn

18

Conditional Gradient Algorithm

xk + 1

3/2 ball
f(xk)

lmo(f(xk))

xk

f(xk)
lmo(f(xk) xk

xk + 1

The conditional gradient algorithm
(also known as the Frank-Wolfe
algorithm) solves constrained
optimization problems:

min
x∈D

f (x)

Conditional Gradient (CG):

Input: x0 ∈ D, step sizes {γk}
where γk ∈ [0, 1], horizon
n ∈ N∗

for k = 0, 1, . . . , n − 1 do
sk = lmo(∇f (xk))
vk = sk − xk

xk+1 = xk + γkvk

Output: xn

18

Plan

Motivation
Feature Learning and µP
Noneuclidean Optimization
(unconstrained) Stochastic Conditional Gradient
A natural geometry for neural networks
Empirical Results
Theoretical Results

19

Beyond steepest descent

Instead of Steepest Descent

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + 1
2γk

∥x − x k∥2

which scales the update by ∥∇f (x k)∥∗, we can directly use

x k+1 = argmin
x∈Rd

⟨gk , x − x k⟩ + ιγk D(x − x k)

to get
x k+1 = x k + γk lmoD(∇f (x k)).

Related to Frank-Wolfe/Conditional Gradient and Generalized Matching Pursuit algorithms.

20

A Stochastic Conditional Gradient that uses Momentum

(Unconstrained) Stochastic Conditional Gradient (uSCG/SCG):

Input: x0 ∈ D, step sizes {γk}, momentum {αk}, horizon n ∈ N
Initialize d0 = 0
for k = 0, 1, 2, . . . n − 1 do

Sample ξk
gk = ∇f (xk , ξk)
dk = (1 − αk)dk−1 + αkgk

sk = lmo(dk)

vk =
{

sk uSCG
sk−xk SCG

xk+1 = xk + γkvk

Output: x̄n selected uniformly at random among all iterates (for the analysis).

Momentum reduces variance in stochastic setting.
uSCG solves the problem min

x∈Rd
f (x) while SCG solves the problem min

x∈D
f (x) where D is

the unit ball of the norm.
The direction sk has fixed norm.
SCG is “just” uSCG with weight decay

21

Weight Decay and SCG

We know that Weight Decay should not simply be seen as Tikhonov regularization (Hutter
et al.).

GD with weight decay (decoupled): x k+1 = (1 − λ)x k − γ∇f (x k)

GD on Tikhonov problem (coupled): x k+1 = x k − γ(∇f (x k) + λx k)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better”).

In a , this point is critical because the lmo is nonlinear.

uSCG + weight decay → SCG: x k+1 = (1 − λ)x k − γ

= (1 − λ)x k − λ

uSCG on Tikhonov problem: x k+1 = x k − γ

The “correct” interpretation of Weight Decay in this context is that it transforms your
unconstrained optimizer into a constrained optimizer, with implicit radii that are dictated
by the chosen combination of step size γ and Weight Decay λ!

22

Weight Decay and SCG

We know that Weight Decay should not simply be seen as Tikhonov regularization (Hutter
et al.).

GD with weight decay (decoupled): x k+1 = (1 − λ)x k − γ∇f (x k)

GD on Tikhonov problem (coupled): x k+1 = x k − γ(∇f (x k) + λx k)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better”).
In a noneuclidean setting, this point is critical because the lmo is nonlinear.

uSCG + weight decay → SCG: x k+1 = (1 − λ)x k − γlmo(∇f (x k))

= (1 − λ)x k − λlmo
γ/λ

(∇f (x k))

uSCG on Tikhonov problem: x k+1 = x k − γlmo(∇f (x k) + λx k)

The “correct” interpretation of Weight Decay in this context is that it transforms your
unconstrained optimizer into a constrained optimizer, with implicit radii that are dictated
by the chosen combination of step size γ and Weight Decay λ!

22

Weight Decay and SCG

We know that Weight Decay should not simply be seen as Tikhonov regularization (Hutter
et al.).

GD with weight decay (decoupled): x k+1 = (1 − λ)x k − γ∇f (x k)

GD on Tikhonov problem (coupled): x k+1 = x k − γ(∇f (x k) + λx k)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better”).
In a noneuclidean setting, this point is critical because the lmo is nonlinear.

uSCG + weight decay → SCG: x k+1 = (1 − λ)x k − γ lmo(∇f (x k))

= (1 − λ)x k − λ lmo
γ/λ

(∇f (x k))

uSCG on Tikhonov problem: x k+1 = x k − γ lmo(∇f (x k) + λx k)

The “correct” interpretation of Weight Decay in this context is that it transforms your
unconstrained optimizer into a constrained optimizer, with implicit radii that are dictated
by the chosen combination of step size γ and Weight Decay λ!

22

Plan

Motivation
Feature Learning and µP
Noneuclidean Optimization
(unconstrained) Stochastic Conditional Gradient
A natural geometry for neural networks
Empirical Results
Theoretical Results

23

Picking a Norm and Initializations

If we can specify a norm ∥ · ∥αl for the input space and a norm ∥ · ∥βl for the output
spaces of each layer of our network, then this induces an operator norm for each layer.

We can specify a norm for the whole set of parameters by taking

∥x∥ = max
l∈[L]

{∥Xl∥αl →βl }

Spectral Feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.
→ leads to a scaled ℓ2 → ℓ2 operator norm ∥ · ∥op on weight matrices:

∥X∥RMS→RMS =
√

din

dout
∥X∥op.

The lmo associated to the ball for this norm is given by the scaled matrix sign
−

√
dout
din

UV T .

The first and final layers require more thought!

24

Picking a Norm and Initializations

If we can specify a norm ∥ · ∥αl for the input space and a norm ∥ · ∥βl for the output
spaces of each layer of our network, then this induces an operator norm for each layer.
We can specify a norm for the whole set of parameters by taking

∥x∥ = max
l∈[L]

{∥Xl∥αl →βl }

Spectral Feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.
→ leads to a scaled ℓ2 → ℓ2 operator norm ∥ · ∥op on weight matrices:

∥X∥RMS→RMS =
√

din

dout
∥X∥op.

The lmo associated to the ball for this norm is given by the scaled matrix sign
−

√
dout
din

UV T .

The first and final layers require more thought!

24

Picking a Norm and Initializations

If we can specify a norm ∥ · ∥αl for the input space and a norm ∥ · ∥βl for the output
spaces of each layer of our network, then this induces an operator norm for each layer.
We can specify a norm for the whole set of parameters by taking

∥x∥ = max
l∈[L]

{∥Xl∥αl →βl }

Spectral Feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.
→ leads to a scaled ℓ2 → ℓ2 operator norm ∥ · ∥op on weight matrices:

∥X∥RMS→RMS =
√

din

dout
∥X∥op.

The lmo associated to the ball for this norm is given by the scaled matrix sign
−

√
dout
din

UV T .

The first and final layers require more thought!

24

Picking a Norm and Initializations

If we can specify a norm ∥ · ∥αl for the input space and a norm ∥ · ∥βl for the output
spaces of each layer of our network, then this induces an operator norm for each layer.
We can specify a norm for the whole set of parameters by taking

∥x∥ = max
l∈[L]

{∥Xl∥αl →βl }

Spectral Feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.
→ leads to a scaled ℓ2 → ℓ2 operator norm ∥ · ∥op on weight matrices:

∥X∥RMS→RMS =
√

din

dout
∥X∥op.

The lmo associated to the ball for this norm is given by the scaled matrix sign
−

√
dout
din

UV T .

The first and final layers require more thought!

24

Norms for input layers

The operator norm chosen for the initial layer differs from the intermediary layers,
depending on the task (NLP, images, etc).
For language tasks, the input z is usually a 1-hot encoded vector so

∥z∥∞ = ∥z∥2 = ∥z∥1 = 1

identically. This in turn means

∥W1∥∞→RMS = ∥W1∥2→RMS = ∥W1∥1→RMS

on this restricted domain.

(Note there is a sign error for lmo in this table)

For image domains, we use the RMS norm which gives the scaled operator norm for the
initial layer.

25

Norms for output layers

We have no restriction to bound the output in RMS norm; instead we consider
bounding the maximal entry using L∞.
We can bound ∥A∥RMS→∞ ≤ 1

din
∥A∥1→∞ which gives us a scaled sign lmo for the last

layer.

(Note there is a sign error for lmo in this table)

26

uSCION and SCION

We refer to the instantiation of uSCG and SCG using operator norms as Unconstrained
Scion and Scion respectively, which stands for

Stochastic Conditional gradIent with Operator Norms
SCION

We recommend the following norms (First layer → Intermediary layers → Last layer):
image domains: Spectral → Spectral → Sign
1-hot input: ColNorm → Spectral → Sign

27

Plan

Motivation
Feature Learning and µP
Noneuclidean Optimization
(unconstrained) Stochastic Conditional Gradient
A natural geometry for neural networks
Empirical Results
Theoretical Results

28

Empirical Results

3B NanoGPT Training

0 1000 2000 3000 4000 5000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0
Va

lid
at

io
n

Lo
ss

Adam
Muon
Scion
Unconstrained Scion

29

Illustration of norm control: GPT Training

Let ρ be the radius of the set D that is used to define lmo. Both uSCG and SCG provide
control over the norm of the output x̄n:

SCG Guarantees ∥x̄n∥ ≤ ρ

uSCG Guarantees ∥x̄n∥ ≤ ρ
n−1∑
k=0

γk

0 1000 2000 3000 4000 5000
Steps

0

5

10

15

20

25

Sp
ec

tra
l n

or
m

Unconstrained Scion
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6

0 1000 2000 3000 4000 5000
Steps

0

5

10

15

20

25

Sp
ec

tra
l n

or
m

Scion
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6

30

Hyperparameter Transfer: GPT Training

2 16 2 14 2 12 2 10 2 8 2 6

Learning Rate

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Adam

Width (Model Size)
512 (64M)
768 (124M)
1280 (300M)
2560 (1B)

2 16 2 14 2 12 2 10 2 8

Learning Rate

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0
Muon

Width (Model Size)
512 (64M)
768 (124M)
1280 (300M)
2560 (1B)

2 16 2 14 2 12 2 10 2 8

Learning Rate

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0
Unconstrained Scion

Width (Model Size)
512 (64M)
768 (124M)
1280 (300M)
2560 (1B)

2 16 2 14 2 12 2 10 2 8

Learning Rate

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0
Scion

Width (Model Size)
512 (64M)
768 (124M)
1280 (300M)
2560 (1B)

31

Different Norm Choices on First/Last Layer

Shallow (3 layers) GPT on Shakespeare dataset.

2
11

2
9

2
7

2
5

2
3

2
1

Learning rate

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Va
lid

at
io

n
lo

ss

Scion (Sign Spectral Sign)

Width
256
512
1024
2048

2
11

2
9

2
7

2
5

2
3

2
1

Learning rate

Scion (Spectral Spectral Sign)

2
11

2
9

2
7

2
5

2
3

2
1

Learning rate

Scion (ColNorm Spectral Sign)

32

Hyperparameter Transfer

8 6 4 2 0
log2 Learning Rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Te

st
 a

cc
ur

ac
y
Scion on CIFAR10

width-factor
0.5
1.0
2.0
4.0

Optimal step size transfer across width in a convolutional NN trained to classify with
CIFAR10.

33

Effect of batch size

Batchsize sensitivity on NanoGPT (124M). SCION is less sensitive to batch increases (for
a fixed token budget)

1000 2000 3000 4000 5000 6000
Batch Size

3.4

3.6

3.8

4.0

4.2

M
in

im
um

 V
al

id
at

io
n

Lo
ss

Method
Adam
Muon
Scion
Unconstrained Scion

34

Tuning the momentum on CIFAR10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Momentum

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
g 2

 L
ea

rn
in

g
Ra

te

40.7 40.2 40.2 39.2 38.7 38.1 37.8 36.6 36.3 36.1

53.8 54.0 52.8 52.2 51.0 50.8 49.7 49.2 48.3 47.0

69.6 69.2 68.1 66.8 65.5 64.6 63.5 63.0 61.5 60.8

82.3 81.1 79.8 78.7 77.7 76.7 75.5 74.4 73.5 72.1

88.2 87.4 86.6 85.8 84.9 84.0 83.1 82.5 81.6 80.3

90.9 90.6 90.2 89.8 89.1 88.7 88.0 87.4 86.7 85.7

92.1 92.2 92.2 92.1 91.7 91.4 91.1 90.8 90.3 89.5

91.3 92.5 92.8 92.7 92.7 92.6 92.6 92.3 92.2 91.8

75.4 86.7 89.5 91.2 91.8 91.9 92.1 92.2 92.3 91.9

10.0 10.0 10.0 10.0 10.0 10.0 10.0 40.0 48.1 80.7

Unconstrained Scion (epochs=8)

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Momentum

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
g 2

 L
ea

rn
in

g
Ra

te

52.6 53.1 51.7 50.8 50.3 49.8 48.5 47.8 47.4 45.9

70.7 69.3 67.9 66.9 65.6 64.7 63.5 62.5 61.3 60.2

83.3 81.5 80.3 79.1 78.0 76.7 75.6 74.6 73.5 72.3

88.9 87.9 86.9 86.0 85.0 84.2 83.5 82.6 81.6 81.0

91.5 90.9 90.2 89.8 89.3 88.9 88.2 87.5 87.1 86.3

92.7 92.5 92.2 91.8 91.7 91.4 91.0 90.7 90.3 89.9

93.2 93.3 93.2 93.2 93.0 92.9 92.9 92.5 92.3 92.0

93.1 93.6 93.8 93.8 93.7 93.5 93.6 93.3 93.4 93.2

10.0 84.8 90.5 92.3 93.3 93.4 93.5 93.5 93.7 93.6

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 16.6 47.1

Unconstrained Scion (epochs=16)

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Momentum

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
g 2

 L
ea

rn
in

g
Ra

te

69.6 68.2 66.7 66.0 64.8 63.4 62.3 61.4 60.6 59.3

83.6 81.7 80.2 78.9 77.7 76.5 75.3 74.2 73.0 72.1

89.0 87.9 86.9 85.8 85.2 84.3 83.4 82.6 81.9 81.1

91.0 90.6 90.0 89.4 89.1 88.4 88.1 87.5 87.0 86.5

92.6 92.0 91.6 91.5 91.1 90.8 90.5 90.3 90.2 89.7

93.3 93.1 92.8 92.7 92.5 92.2 92.0 92.0 91.9 91.6

93.8 93.8 93.8 93.7 93.5 93.4 93.2 93.1 93.1 92.9

93.6 94.1 94.1 94.1 94.2 94.0 93.9 93.8 93.7 93.7

10.0 10.0 89.7 93.3 94.0 94.0 94.1 94.2 93.9 94.0

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 14.4

Unconstrained Scion (epochs=32)

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Momentum

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
g 2

 L
ea

rn
in

g
Ra

te

50.9 49.8 48.4 46.9 45.6 44.7 44.9 43.7 42.2 41.1

65.9 65.1 63.4 61.7 60.6 59.3 58.5 57.2 56.0 54.7

79.8 78.3 76.2 75.0 73.4 72.4 71.3 70.2 68.9 67.9

89.3 88.5 87.5 86.6 85.6 84.4 83.9 82.9 82.0 80.9

92.9 93.0 93.1 92.9 92.6 92.4 92.1 91.9 91.4 90.9

93.1 93.4 93.4 93.5 93.6 93.6 93.4 93.3 93.3 92.9

92.4 92.8 92.8 92.8 92.8 92.8 92.7 92.4 92.3 92.1

91.2 91.3 91.5 91.4 91.2 91.1 90.6 90.1 89.4 88.3

89.5 89.4 89.0 88.6 87.9 86.6 85.2 82.9 82.3 79.0

56.1 39.8 54.0 24.4 50.9 35.9 71.5 33.1 32.3 20.6

Scion (epochs=8)

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Momentum

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
g 2

 L
ea

rn
in

g
Ra

te

66.7 65.3 63.0 61.1 59.6 58.6 57.9 56.6 55.4 53.9

80.7 78.2 76.6 74.9 73.3 71.9 71.3 70.0 68.6 67.5

89.6 88.3 87.4 86.4 85.4 84.6 84.0 82.9 82.1 81.3

93.3 93.1 92.9 92.8 92.6 92.4 92.1 92.0 91.7 91.0

94.1 94.4 94.4 94.5 94.5 94.4 94.2 94.3 94.2 94.1

94.2 94.3 94.3 94.4 94.4 94.3 94.3 94.4 94.2 94.1

93.6 93.6 93.8 93.9 93.8 93.9 93.6 93.6 93.5 93.3

92.6 92.8 92.8 92.8 92.8 92.6 92.6 92.3 92.0 91.5

91.3 91.2 91.0 91.1 90.8 90.7 90.2 89.7 89.0 87.9

57.5 57.4 57.2 72.7 10.0 71.4 55.3 10.0 53.0 10.0

Scion (epochs=16)

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Momentum

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
g 2

 L
ea

rn
in

g
Ra

te

80.9 78.1 76.4 74.8 73.2 72.1 70.8 69.6 68.6 67.1

89.2 88.1 87.0 86.2 85.3 84.5 83.6 82.7 81.6 81.2

92.8 92.5 92.3 92.0 91.8 91.6 91.6 91.2 91.1 90.8

94.4 94.3 94.4 94.4 94.3 94.3 94.1 94.3 94.1 94.0

94.5 94.6 94.7 94.7 94.8 94.6 94.6 94.7 94.6 94.4

94.4 94.6 94.6 94.7 94.7 94.7 94.8 94.6 94.6 94.4

94.3 94.4 94.4 94.5 94.4 94.4 94.4 94.3 94.3 94.0

93.4 93.8 93.8 93.8 93.8 93.7 93.6 93.6 93.3 93.0

92.6 92.7 92.7 92.7 92.6 92.6 92.4 92.1 91.9 91.4

42.5 26.3 58.6 74.6 74.7 58.2 58.1 26.0 57.2 10.0

Scion (epochs=32)

10

20

30

40

50

60

70

80

90

35

Plan

Motivation
Feature Learning and µP
Noneuclidean Optimization
(unconstrained) Stochastic Conditional Gradient
A natural geometry for neural networks
Empirical Results
Theoretical Results

36

Template Optimization Problem

To analyze the algorithm, we consider the class of problems

min
x∈X

f (x) := Eξ[f (x , ξ)]

where
X is either Rd (unconstrained) or D (constrained), with

D := {x : ∥x∥ ≤ ρ}.

Eξ[f (·, ξ)] is Lipschitz-smooth with respect to some norm.
We have access to a stochastic first-order oracle ∇f (·, ξ) which is unbiased

Eξ[∇f (·, ξ)] = ∇f (·)

and has bounded variance

Eξ[∥∇f (·, ξ) − ∇f (·)∥2
2] ≤ σ2.

37

Convergence Results for fixed α

Let ρ be the radius of the set D used in the lmo.

Theorem (Convergence rate for uSCG with constant α)
Let n ∈ N∗ and let x̄n be the output of uSCG with α ∈ (0, 1) and constant step size
γ = 1√

n . Then,

E[∥∇f (x̄n)∥∗] ≤ O
(

Lρ√
n

+ σ

)

Theorem (Convergence rate for SCG with constant α)
Let n ∈ N∗ and let x̄n be the output of SCG with α ∈ (0, 1) and constant step size
γ = 1√

n . Then, for all u ∈ D,

E[⟨∇f (x̄n), x̄n − u⟩] ≤ O
(

Lρ2
√

n
+ σ

)
=⇒ convergence to a noise-dominated region given by σ.

38

Convergence Results for vanishing αk

Let ρ be the radius of the set D used in the lmo.

Theorem (Convergence rate for uSCG with vanishing αk)

Let n ∈ N∗ and let x̄n be the output of uSCG with αk = 1/
√

k and constant step size
γ = 3

4n3/4 . Then,

E[∥∇f (x̄n)∥∗] ≤ O
(1

n1/4 + Lρ

n3/4

)
Theorem (Convergence rate for SCG with vanishing αk)

Let n ∈ N∗ and let x̄n be the output of SCG with αk = 1/
√

k and constant step size
γ = 3

4n3/4 . Then, for all u ∈ D,

E[⟨∇f (x̄n), x̄n − u⟩] ≤ O
(

1
n1/4 + Lρ2

n3/4

)
=⇒ convergence to a first-order critical point for either the unconstrained (uSCG) or the

constrained (SCG) problem.

39

Relationship to other Algorithms

Algorithm α Norm lmo Formula
Normalized SGD 1 Euclidean ∥ · ∥2 − d

∥d∥2
Normalized SGD with momentum]0, 1] Euclidean ∥ · ∥2 − d

∥d∥2
SignSGD 1 Max-norm ∥ · ∥∞ −sign(d)
Signum]0, 1] Max-norm ∥ · ∥∞ −sign(d)
Muon∗]0, 1] ℓ2 → ℓ2 operator-norm ∥ · ∥op −UV T , d = UΣV T

Our framework generalizes these algorithms through norm selection and momentum parameter.

40

Related Work

Lion-K: Lizhang Chen, Bo Liu, Kaizhao Liang, Qiang Liu (Oct. 2023)
Muon blogpost: Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista,
Laker Newhouse, and Jeremy Bernstein (Dec. 2024)
Kimi Moonshot AI: many (Feb. 2025)
PSGD: Omead Pooladzandi and Xi-Lin Li (Feb. 2024)

41

Paper

arXiv:2502.07529, also at ICML 2025 (Spotlight)

Currently working on extensions as well :)

42

ALMOND for dessert

Averaged LMO directionNal Descent (ALMOND):

Input: x0 ∈ D, step sizes {γk}, momentum {αk}, horizon n ∈ N
Initialize d0 = 0
for k = 0, 1, 2, . . . n − 1 do

gk = ∇f (xk , ξk)
dk = (1 − αk)dk−1 + αk lmo(gk)
xk+1 = xk + γkdk

Output: x̄n selected uniformly at random among all iterates.

Not competitive empirically. Theoretically, can only show convergence to a noise
dominated region.

43

