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History and Motivation

@ 1956 Marguerite Frank and
Philip Wolfe: An algorithm
for quadratic programming.
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History and Motivation

@ 1956 Marguerite Frank and
Philip Wolfe: An algorithm
for quadratic programming.

e Considered the following

problem:
min  f(x)
x€DCRn
@ D is a convex, compact set
and f is Lipschitz-smooth.
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The Frank-Wolfe Algorithm

Algorithm: Frank-Wolfe (Con-
ditional Gradient)

Input: xg € D.
k=20
repeat

Tk = k 5

Sk € Argmln (VFf(xx),s)
€D

Xk+1 _Xk _’Yk( k—Sk)
k< k+1
until convergence;

Output: Xg41-

(Credit: Stephanie
Stutz/Wikipedia)
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Frank-Wolfe for Sparse Optimizaiton
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Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization
Methods for Machine Learning

@ Curvature constant:

Cr = sup S(Fy)—f(x) =y —x,VF(x))
X,z€
v€l0,1]
y=vz+(1-7)x

We call Df (y,x) =f (y) — f(x) — (y — x, VF (x)) the
Bregman divergance associated to f.
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Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization
Methods for Machine Learning

@ Curvature constant:

Cr = sup S(Fy)—f(x) =y —x,VF(x))
X,z€
v€l0,1]
y=vz+(1-7)x

We call Df (y,x) =f (y) — f(x) — (y — x, VF (x)) the
Bregman divergance associated to f.

e Bounded by the Lipschitz constant Lf of V£ on D:
Vx,y €D, |[VF(x)=VF(y)ll <Lellx—yl
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
@ The set D might not admit easy projections.
o Nuclear norm |-]|, of a matrix (¢* norm on singular values).
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
@ The set D might not admit easy projections.
o Nuclear norm ||-||, of a matrix (¢! norm on singular values).
@ The updates of Frank-Wolfe maintain structure.
e Useful when D is atomically generated, i.e.
D = conv(ay,...a;).
e Sparsity, low-rank, etc.
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?

@ The set D might not admit easy projections.

o Nuclear norm ||-||, of a matrix (¢! norm on singular values).
@ The updates of Frank-Wolfe maintain structure.

e Useful when D is atomically generated, i.e.

D = conv(ay,...a;).

e Sparsity, low-rank, etc.

@ The iterates are always feasible, i.e. x, € D for all k € N.

£1 ball £ ball

ail dil dao

as :’."
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Limitations of Classical Frank-Wolfe/Conditional Gradient

@ Lipschitz-smoothness can be a strong assumption.
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Limitations of Classical Frank-Wolfe/Conditional Gradient

@ Lipschitz-smoothness can be a strong assumption.

@ Not able to handle nonsmooth problems.
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Limitations of Classical Frank-Wolfe/Conditional Gradient

@ Lipschitz-smoothness can be a strong assumption.
@ Not able to handle nonsmooth problems.

e Affine constraints are not handled in a straightforward way if
the intersection of the affine constraint and the set D is not

simple.
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Modern Problem

Classical problem (R"):

inf
min £ (x)

o f is Lipschitz-smooth.

@ D C R" is convex, compact.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
)r(nelgf(x) Aan:nbf(x)—i—(go T)(x)+ h(x)

o f is Lipschitz-smooth.

@ D C R" is convex, compact.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
inf in f T h
min £ (x) min £(x) + (g o T)(x) +h(x)
e f is Lipschitz-smooth. e f is relatively smooth.

@ D C R" is convex, compact.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
inf in f T h
min £ (x) min £(x) + (g o T)(x) +h(x)
e f is Lipschitz-smooth. e f is relatively smooth.
e D C R" is convex, compact. e domh (= D) is compact.

@ his Lipschitz-continuous.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
inf in f T h
min £ (x) min £(x) + (g o T)(x) +h(x)
e f is Lipschitz-smooth. e f is relatively smooth.
e D C R" is convex, compact. e domh (= D) is compact.

@ his Lipschitz-continuous.

® prox, is accessible.

g

GREYC
Antonio Silveti-Falls The CGALP Algorithm



Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
inf in f T h
min £ (x) min £(x) + (g o T)(x) +h(x)
e f is Lipschitz-smooth. e f is relatively smooth.
e D C R" is convex, compact. e domh (= D) is compact.

@ his Lipschitz-continuous.

® prox, is accessible.

e T:Hp,—H, and
A:Hp — Hg are bounded
linear operators. 2 3
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Relative Smoothness

Let F: H — RU{+o0} and ¢ :]0,1] — Ry. The pair (f,D),
where f : H — RU {400} and D C dom(f), is said to be
(F, ¢)-smooth if there exists an open set Dy such that
D C Dy C int (dom (F)) and

@ F and f are differentiable on Dy;

@ [ —f is convex on Dy;

@ The following holds,

DF(Za X)
K = sup —_— < +too.
(F.6P) x,s€D; v€]0,1] C(’y)
z=x+v(s—x)
n T,
S
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Relative Smoothness

Let F: H — RU{+o0} and ¢ :]0,1] — Ry. The pair (f,D),
where f : H — RU {400} and D C dom(f), is said to be
(F, ¢)-smooth if there exists an open set Dy such that
D C Dy C int (dom (F)) and

@ F and f are differentiable on Dy;

@ [ —f is convex on Dy;

@ The following holds,

De(z, x)

K = sup —_—
(F.6.P) x,s€D; v€]0,1] C (’7)

z=x+v(s—x)

< +o00.

K is a far-reaching generalization of the standard curvature
(F.¢D) g8 2

constant. h.‘
GREYC
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Moreau-Yosida Regularization

Given a closed, convex, proper function g, the Moreau envelope
(Moreau-Yosida regularization) of g is,

g (x) = ming () + 55 I - I
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Moreau-Yosida Regularization

Given a closed, convex, proper function g, the Moreau envelope
(Moreau-Yosida regularization) of g is,

g (x) = ming () + 55 I - I

@ The Moreau envelope is always Lipschitz-smooth.
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Moreau-Yosida Regularization

Given a closed, convex, proper function g, the Moreau envelope
(Moreau-Yosida regularization) of g is,

g (x) = ming () + 55 I - I

@ The Moreau envelope is always Lipschitz-smooth.
@ Gradient is given by,

X — prox g, (x)

Vgﬁ x) =
(x) 5
The proximal operator associated to g with parameter (3 is given by,
. 1 2 Pt
prox g (x) = Argmin g (y) + 2 [[x =yl g
Y GREYC
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What About the Affine Constraint Ax = b7

o Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min f (x) = minmaxf (x) + (u, Ax — b)
Ax=b X o

which admits a so-called dual problem,

max min f (x) + (i, Ax — b)
nooox
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What About the Affine Constraint Ax = b7

o Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min f (x) = minmaxf (x) + (u, Ax — b)
Ax=b X o

which admits a so-called dual problem,

max min f (x) + (i, Ax — b)
nooox

e Augmented Lagrangian problem,

min f (x) = minmaxf (x) + (u, Ax — b) + g | Ax — b||?
m

Ax=b X

g
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The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat

until convergence;
Output: Xk41.




The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)

)
til convergence; h‘
until convergen G
Output: Xk41.
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The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)
sk € Argming {h(s) + (zx,s)}

until convergence;
Output: Xk41.




The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)
sk € Argming {h(s) + (zx,s)}

Xk+1 = Xk — Yk (Xk - Sk)

until convergence;
Output: Xk41.




The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)
Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:

(OK) ken » (PK) ke € Uy
k =0.

repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)
sk € Argming {h(s) + (zx,s)}

Xk+1 = Xk — Yk (Xk - Sk)
Pkt1 = ok + Ok (Axky1 — b)
k+— k+1

)
til convergence; h‘
until convergen G
Output: Xk41.
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Example Parameters

General example: take, for k € N,

1 PR "
fyk_(k+1)17b7 k_(k—|—1)176’ Wi

0<2b<d<1l, 6<1—b p>2*b/c; c>o0.

pk=p>0,

g
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Example Parameters

General example: take, for k € N,

1 1
pk=p>0, e Bk Grors W

0<2b<d<1l, 6<1—b p>2*b/c; c>o0.

Simple example: take, for k € N,

p>4, V= Bk = v Ok =k,

g
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Asymptotic Feasibility

Theorem

Let (xk) ey be a sequence of iterates generated by CGALP for a
problem which satisfies the previous assumptions on both the
functions and the parameters. The the following holds,

@ Axy converges strongly to b, i.e.,

lim ||[Axx — b|| =0
k—r00

GREYC
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Asymptotic Feasibility Rate

@ Pointwise rate:

. 1
ot 14x ] =0 ()

Furthermore, 3 a subsequence (ka)jeN such that

1
I'kj7

[[Axi; — b <
where [, = Zf'(:o ;.

g
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Asymptotic Feasibility Rate

@ Pointwise rate:

. 1
ot 14x ] =0 ()

Furthermore, 3 a subsequence (ka)jeN such that

1
Ax,. — b|| < ——,
I bl
where [, = Zf'(:o ;.
e Ergodic rate: let X, = Zf‘(:o ~ixi/T k. Then

o1
HAXk—bn—O( m) 2
GREYC
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Convergence to Optimality

Theorem

Let (xk),cn be the sequence of primal iterates generated by
CGALP and (x*, u*) a saddle-point pair for the Lagrangian.
Assuming the problem satisfies the previous assumptions on both
the functions and the parameters, the following holds

e Convergence of the Lagrangian:

lim L (xk, pu*) = L(x*, 1)
k—o0

GREYC
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Convergence to Optimality

Theorem

Let (xk),cn be the sequence of primal iterates generated by
CGALP and (x*, u*) a saddle-point pair for the Lagrangian.
Assuming the problem satisfies the previous assumptions on both
the functions and the parameters, the following holds

e Convergence of the Lagrangian:
lim L (xk, pu*) = L(x*, 1)
k—o0
o Every weak cluster point X of (xi),cy Is a solution of the
primal problem, and (fux),cy is bounded.
¥,
P §
GREYC
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Lagrangian Convergence Rate

@ Pointwise rate:
. * * ok 1
Oér;gkﬁ(x,,u )—L(x*u)=0 (U)

Furthermore, 3 a subsequence (ka)jeN such that

£ (g ) — £ 1) < £
)

g
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Lagrangian Convergence Rate

@ Pointwise rate:
. * * ok 1
Oér;gkﬁ(x,,u )—L(x*u)=0 (U)

Furthermore, 3 a subsequence (ka)jeN such that

£ (g ) — £ 1) < £
)

e Ergodic rate: let X, = Zf'(:o ~ixi+1/T k. Then
= * * * 1
L (X, ) = L(x",p7) = O <Fk>

GREYC
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A Remark on Subsequential Rates

Our main result shows that
. * * * pk 2 —
lim [ﬁ(xk,u ) — £ (x*, 1) + 25 | Axe — b ] ~0
k—o00

and, subsequentially,

j 1
£ (xigo ") = £, 1)+ 5 || Axig — b < —

kj

so that our subsequential rates are for the same subsequence.

g
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Simple Projection Problem

05

. 2
min X —
pmin, lbx =yl

e
Ax=0 GREYC
o = = = ae
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Lagrangian Convergence Rate

LR, 1) = L£x*,p1")

10° 10t 10? 103 104

Ergodic convergence profile for various step size choices,

2 =¥,
L 1UL) S L %Y
(k+1) GREYC
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Matrix Completion Problem

Consider the following matrix completion problem,

cmin 19X =yl XL < 0 [IX T < 52

g
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Matrix Completion Problem

Consider the following matrix completion problem,

cmin 19X =yl XL < 0 [IX T < 52

Lift to a product space for CGALP :
min _{G(QX)+ H(X): N,. X =0}

Xe(RMxN)?
with
o100) = (Joxt) -, [ ]
and
H(X) = 1 <X(1)) + g (X(z)) ;f‘
GREYC
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Direction Finding Step (2 components)

5,21) € Argmin

<Q* (QX,EI) —Y = ProXgg (QXISI) - y))
Bk

(0= P 4 (x(l)—xk(2))),5(1)>

g
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Direction Finding Step (2 components)

1) e (QXk(l)_y_me%ru (QXS)_V))
S, € Argmin 2 1
50)6Bﬁﬁ| Bk
4z > < (1) M(2) s (X(l) _ X,E2)>) ’5(1)>
@ (o -y —pony (67 - 1))
APRS Argmln 2
S(@)eB)?2 Bi

+ (u(f) — ) + pi (X152) - Xk(l))> ) 5(2)> a5y

GREYC
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CGALP Ergodic Convergence Rate

LK u')—Lx",u")

g
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Can We Extend the Algorithm?

What if we have noise?

@ On the computation of

T* | Tx,—prox Tx
VF (xk) + (7 pﬂk il 70) + kAT (Axk — b)? (A])

g
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Can We Extend the Algorithm?

What if we have noise?
@ On the computation of

T* | Tx,—prox Tx
VF (xk) + (7 pﬂk il 70) + kAT (Axk — b)? (A])

@ On the linear minimization oracle itself? (\})

g
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Inexact CGALP

Algorithm: ICGALP

Input: xp € D = dom (h); po € ran(A); (V) kenv (Bi) ke

(Ok)ken s (PK) ken € 40 k= 0.
repeat

Yk = Proxg, » (Txk)
zk = V() + T (Txk — yk) / Bk + A"k + pkA* (Axe — b) + A%

\d
until convergence; b 3
GREYC
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Inexact CGALP

Algorithm: ICGALP

Input: xp € D o dom (h); po € ran(A); (Vi) ken (Bk)ken

(Ok)ken s (PK) ken € 40 k= 0.
repeat

Yk = Proxg, » (Txk)

zi = VI(xk) + T*(Txk — yk) /B + A* ik + p A" (Axic — b) + A7
s € Argmin,cry, {h(s) + (26, 5)}

Sk e{s:(s,zk) + h(s) < (sk,zk) + h(sk)+ A}

until convergence;
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Inexact CGALP

Algorithm: ICGALP

Input: xp € D o dom (h); po € ran(A); (Vi) ken (Bk)ken

(Ok)ken s (PK) ken € 40 k= 0.
repeat

Yk = Proxg, » (Txk)

zi = VI(xk) + T*(Txk — yk) /B + A* ik + p A" (Axic — b) + A7
s € Argmin,cry, {h(s) + (26, 5)}

Sk e{s:(s,zk) + h(s) < (sk,zk) + h(sk)+ A}

Xk41 = Xk — Yk (Xk — 5k)
k41 = ik + Ok (Axky1 — b)
k+— k+1

until convergence;
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Technical Setup

Let A7 and A} be random variables from (Q, F,PP) to H, and R
respectively. _ _
Define the filtration § = (8k)keny Where 8y e (X0, 1405 S0, - - - 5 Sk)

~

is the o-algebra generated by the random variables xg, 10, S0, - - - , Sk-

g
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Technical Setup

Let A7 and A} be random variables from (Q, F,PP) to H, and R
respectively. _ _
Define the filtration § = (8k)keny Where 8y e (X0, 1405 S0, - - - 5 Sk)

~

is the o-algebra generated by the random variables xg, 10, S0, - - - , Sk-
We will assume:

° (7k+1E [H/\iHH | SkaeN € £3.(8)
° (7k+1E P‘iﬂ | Sk])keN € ﬂr (S)
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Technical Setup

Let A7 and A} be random variables from (Q, F,PP) to H, and R
respectively. _ _
Define the filtration § = (8k)keny Where 8y e (X0, 1405 S0, - - - 5 Sk)

is the o-algebra generated by the random variables xg, 10, S0, - - - , Sk-
We will assume:

° (7k+1E [H/\iHH | SkaeN € £3.(8)
° (7k+1E P‘iﬂ | Sk])keN € é}i- (S)

We can further refine these assumptions by decomposing A7

depending on the structure of the noise, e.g.

New1 = /\/i+1 - T*)‘§+1/6k+1 + pk)‘fﬂ where /\£+1' )‘iJrl' and

/\,f‘+1 represent the error in computing Vf (xk+1), ot
. )

proxg, o (Txk+1) and A* (Axx — b) respectively. h.‘
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Asymptotic Feasibility

Theorem (Feasibility)

Let (xi),cny be a sequence of iterates generated by ICGALP for a
problem which satisfies the previous assumptions on both the
functions, the parameters, and the noise. The the following holds,

e Asymptotic feasbility: klim |Axk — b|| =0 (P-a.s.) .
—00

b
GREYC
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Asymptotic Feasibility Rate

@ Pointwise rate:

: 1
Ogik ||Ax; — b|| = O (m) (P-as.) .

Furthermore, 3 a subsequence (ka)jeN such that

1
|Axs, — bl| < ——= (P-ass.) ,

NP

def
where I, = Zf:o Vi.

g
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Asymptotic Feasibility Rate

@ Pointwise rate:

: 1
Ogik ||Ax; — b|| = O (m) (P-as.) .

Furthermore, 3 a subsequence (ka)jeN such that

1
|Axs, — bl| < ——= (P-ass.) ,

NP

where I, £ Zf:o Vi
e Ergodic rate: let xi < Zf-;o ~ixi/T k. Then

X = i -a.s
||Axkb|\_0<m) (P-as.) . ;f‘
GREYC

Antonio Silveti-Falls The CGALP Algorithm



Convergence to Optimality

Theorem (Optimality)

Let (xk),cn be the sequence of primal iterates generated by
ICGALP and (x*, u*) a saddle-point pair for the Lagrangian.
Assuming the problem satisfies the previous assumptions on both
the functions, the parameters, and the noise, the following holds

e Convergence of the Lagrangian:

lim £ (xe 1) = £, 1) (B-a:s.) (1)
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Convergence to Optimality

Theorem (Optimality)

Let (xk),cn be the sequence of primal iterates generated by
ICGALP and (x*, u*) a saddle-point pair for the Lagrangian.
Assuming the problem satisfies the previous assumptions on both
the functions, the parameters, and the noise, the following holds

e Convergence of the Lagrangian:

lim £ (xe 1) = £, 1) (B-a:s.) (1)

o Every weak cluster point X of (xi),cy Is a solution of the
primal problem and (pi),c is bounded (IP-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm



Lagrangian Convergence Rate

@ Pointwise rate:

inf £ (xi, %) — £ (x*, 1) = O (rl) (P-as.) .

0<i<k K

Furthermore, 3 a subsequence (ka)jeN s.t.

L (Xg41, %) = L(x*,p1*) < (P-ass.) .

[k

g
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Lagrangian Convergence Rate

@ Pointwise rate:
1
. Lok x LX) ot _
Oérlygkﬁ(x,,u )—L(x*,u*)=0 (I_k) (P-as.) .

Furthermore, 3 a subsequence (ka)jeN s.t.

L (Xg41, %) = L(x*,p1*) < (P-ass.) .

[,
e Ergodic rate: let xi o Zf'(:o ~ixi+1/T k. Then

L (X, ™) — L(x*, 1) =0 <r1k> (P-a.s.) .

GREYC
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Model Problem

Consider the following risk minimization problem,

) ggg;ﬂx) ZEL ()]

assuming that
e Vf is Holder-continuous with constant Cr and exponent 7¢.

e V,L(-,n) is Holder-continuous for every n with constant Cr
and exponent 7¢, 17 being a random variable.

o Vf(x) =E[ViL(x,n)] (P-ae.).

Antonio Silveti-Falls The CGALP Algorithm



Growing Batch Size

At each iteration k € N, we compute the average of a batch of
n (k) samples of the gradient,

n(k)

—~ 1
VieE ——Y Vil (xk, 1)
20 2

g
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Growing Batch Size

At each iteration k € N, we compute the average of a batch of
n (k) samples of the gradient,

n(k)
— 1
VikE —< > Vil (x, 1)
n (k) ,22

We make the assumption each 7; is i.i.d. according to a fixed
distribution and that the number of samples in each batch k can
vary with k (growing).
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Growing Batch Size

At each iteration k € N, we compute the average of a batch of
n (k) samples of the gradient,

n(k)

—~ 1
VieE ——Y Vil (xk, 1)
20 2

We make the assumption each 7; is i.i.d. according to a fixed
distribution and that the number of samples in each batch k can
vary with k (growing).

If n(k) grows sufficiently fast, i.e. like 7;2”, then the summability
condition for the error is met,

(Ve (A 1]l | 84]) ey € 4 (©)
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Variance Reduction

2
. . 2T .
— 1 and introduce a weight v = VP *. Recursively

Fix % = Gy

define,

VY (1- Vk)ﬁk—l + Vil (x,m); Vi1 =0

g
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Variance Reduction

2
. . 2T .
— 1 and introduce a weight v = VP *. Recursively

Fix 3= G

define,
Ve (1= ) Vot + iVl (o mi); Vg =0

Here the batch size need not grow, it may even be 1 for all k. The
choice of b is more restricted in order to me?t summability
conditions, we must take b <1 — (1+ %) to fulfill

(V1B [N [l 186]) ey € £ (S)

g
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Deterministic Sweeping for Finite Sum Minimization

For finite sum minimization problems of the form
min fi (x
xeCCH n Z
Ax=

with n > 1 fixed and each f; Holder-smooth with constant Cr and
exponent 7.

g
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Deterministic Sweeping for Finite Sum Minimization

For finite sum minimization problems of the form

min fi (x
xeCcH n Z
Ax=
with n > 1 fixed and each f; Holder-smooth with constant Cr and
exponent 7.

Requires computing the gradient of a single f; at each iteration and
keeping a running average of past n sampled gradients.
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Deterministic Sweeping for Finite Sum Minimization

Vo = —( 0+ 0+... =+0)

g
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Deterministic Sweeping for Finite Sum Minimization

Vo= =( 0+ 0+... +0)

Vi

S|l

( Vh (x1)+ 0+... +0)

g
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Deterministic Sweeping for Finite Sum Minimization

1
n
— 1
V= =(
n
1
n

0+ 0+... =+0)

—~

Vh (x1)+ 0+... +0)

VH (x)+ Vh(x)+... +0)

—~~

g
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Deterministic Sweeping for Finite Sum Minimization

1
n
— 1
V= =(
n
1
n

0+ 0+... =+0)

—~

Vh (x1)+ 0+... +0)

VH (x)+ Vh(x)+... +0)

—~

—~ 1
Vi =—( VAla)+  Vh(e)+... +Vh(x)

g
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Deterministic Sweeping for Finite Sum Minimization

1
n
— 1
V= =(
n
1
n

0+ 0+... =+0)

—~

Vh (x1)+ 0+... +0)

VH (x)+ Vh(x)+... +0)

—~

—~ 1

Vipi1 = E( VA (Xnt1)+ Vh(a)+... +Vi(xn))

—~ 1

Vinie = ;( Vi (xnp1)+  Vh(xp2) +... +V(xa))
¥
e
GREYC
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Projection Problem with Sampling

We apply the variance reduction method and the sweeping method
to the projection problem,

1
min_— [[x — y||?
Ix]l;<1 2n

Ax=0

by letting 7 take value in {1,...,n} with L(x,n) =% (x, — y;) and
fi(x) = 3 (xi — v;)? respectively.

g
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Projection Problem with Sampling

We apply the variance reduction method and the sweeping method
to the projection problem,

1
min_— [[x — y||?
Ix]l;<1 2n

Ax=0
by letting 7 take value in {1,...,n} with L(x,n) =% (x, — y;) and
fi(x) = 3 (xi — v;)? respectively.
Since the objective is Lipschitz-smooth we have 7r =1 and a =
Wetakeyk: kEp:22_b+1,9k:’yk.

WIN

1
Wap
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Optimality - Big Step Size

Optimality

k

The step size is v, = (k + 1)—(1—%+0.o1)
variance reduction is v, = 7,'".

—— CGALP
Sweep V,fi(xk)

—— VR single Vifi(xk)

—— VR small batch V,fi(xy)

—— VR big batch V,fi(xx)

—— VR small batch V,fi(xi) + px(A " Axi)?
VR big batch V,fi(xc) + px(A " Axi)

== Olivw)

" v
102 10° 104 10°

and the weight for
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Feasibility - Big Step Size

Feasibility

—— CGALP
Sweep Vyfi(xk)

—— VR single V,fi(xx)

—— VR 64 batch V,fi(xk)

—— VR 256 batch V,fi(xk)

—— VR 64 batch V,fi(x) + (A * Ax)®
VR 256 batch V,fi(x) + (A * Axi)®

_— o<

|A%K|?

1
(k+ 1)““)

10? 10° 10° 10°
k

The step size is v, = (k + 1)_(

/3

L=4+001) 4 the weight for

. L 2
variance reduction is v, = 7,

¥
.
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Optimality - Small Step Size

Optimality

—— CGALP
Sweep V,fi(xk)

—— VR single Vifi(xk)

—— VR small batch V,fi(xy)

—— VR big batch V,fi(xx)

—— VR small batch V,fi(xi) + px(A " Axi)?
VR big batch V,fi(xc) + px(A " Axi)

=== ()

%= x|

" v
102 10° 104 10°
k

1-1+0.15)

The step size is v, = (k + 1)_( and the weight for

_ . 2/3
variance reduction is vy = 'yk/ )

¥
.
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Feasibility - Small Step Size

Feasibility

—— CGALP
Sweep V,fi(xy)
—— VR single V,fi(xy)
—— VR 64 batch V,fi(xk)
—— VR 256 batch V,fi(xk)
—— VR 64 batch V,fi(xi) + pk(A *Ax;) "

/"\\ VR 256 batch V,fi(xc) + p(A " Ax)

-== Ogwy)

|A%K|?

10-4 4

T T
102 10° 104 10°
k

1-1+0.15)

The step size is v, = (k + 1)_( and the weight for

_ . 2/3
variance reduction is vy = yk/ )

¥
.
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Thanks for Listening

Thanks for listening.
Full paper available on arxiv: https://arxiv.org/abs/ 2005.05158

"Inexact and Stochastic Generalized Conditional Gradient with
Augmented Lagrangian and Proximal Step" - Antonio Silveti-Falls,
Cesare Molinari, Jalal Fadili.

Special thanks to Cesare Molinari for the invitation to give this talk.
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