
Inexact and Stochastic Generalized Conditional
Gradient with Augmented Lagrangian and

Proximal Step

Antonio Silveti-Falls
(Joint work with Cesare Molinari and Jalal Fadili)

Antonio Silveti-Falls The CGALP Algorithm

History and Motivation

1956 Marguerite Frank and
Philip Wolfe: An algorithm

for quadratic programming.

Considered the following
problem:

min
x∈D⊂Rn

f (x)

D is a convex, compact set
and f is Lipschitz-smooth.

Antonio Silveti-Falls The CGALP Algorithm

History and Motivation

1956 Marguerite Frank and
Philip Wolfe: An algorithm

for quadratic programming.

Considered the following
problem:

min
x∈D⊂Rn

f (x)

D is a convex, compact set
and f is Lipschitz-smooth.

Antonio Silveti-Falls The CGALP Algorithm

The Frank-Wolfe Algorithm

Algorithm: Frank-Wolfe (Con-
ditional Gradient)

Input: x0 ∈ D.
k = 0
repeat

γk = 1

k+2

sk ∈ Argmin
s∈D

⟨∇f (xk) , s⟩

xk+1 = xk − γk (xk − sk)
k ← k + 1

until convergence;
Output: xk+1.

(Credit: Stephanie
Stutz/Wikipedia)

Antonio Silveti-Falls The CGALP Algorithm

Frank-Wolfe for Sparse Optimizaiton

min
∥x∥1≤1

∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization

Methods for Machine Learning

Curvature constant:

Cf = sup
x ,z∈D
γ∈[0,1]

y=γz+(1−γ)x

2

γ2
(f (y)− f (x)− ⟨y − x ,∇f (x)⟩)

We call Df (y , x) = f (y)− f (x)− ⟨y − x ,∇f (x)⟩ the
Bregman divergance associated to f .

Bounded by the Lipschitz constant Lf of ∇f on D:

∀x , y ∈ D, ∥∇f (x)−∇f (y)∥ ≤ Lf ∥x − y∥

Antonio Silveti-Falls The CGALP Algorithm

Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization

Methods for Machine Learning

Curvature constant:

Cf = sup
x ,z∈D
γ∈[0,1]

y=γz+(1−γ)x

2

γ2
(f (y)− f (x)− ⟨y − x ,∇f (x)⟩)

We call Df (y , x) = f (y)− f (x)− ⟨y − x ,∇f (x)⟩ the
Bregman divergance associated to f .

Bounded by the Lipschitz constant Lf of ∇f on D:

∀x , y ∈ D, ∥∇f (x)−∇f (y)∥ ≤ Lf ∥x − y∥

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?

The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.

Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?

The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.

Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.
Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

a0

a1

a2

a3

ℓ1 ball
a0a1

a2 a3

ℓ∞ ball

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.
Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

a0

a1

a2

a3

ℓ1 ball
a0a1

a2 a3

ℓ∞ ball

Antonio Silveti-Falls The CGALP Algorithm

Limitations of Classical Frank-Wolfe/Conditional Gradient

Lipschitz-smoothness can be a strong assumption.

Not able to handle nonsmooth problems.

A�ne constraints are not handled in a straightforward way if
the intersection of the a�ne constraint and the set D is not
simple.

Antonio Silveti-Falls The CGALP Algorithm

Limitations of Classical Frank-Wolfe/Conditional Gradient

Lipschitz-smoothness can be a strong assumption.

Not able to handle nonsmooth problems.

A�ne constraints are not handled in a straightforward way if
the intersection of the a�ne constraint and the set D is not
simple.

Antonio Silveti-Falls The CGALP Algorithm

Limitations of Classical Frank-Wolfe/Conditional Gradient

Lipschitz-smoothness can be a strong assumption.

Not able to handle nonsmooth problems.

A�ne constraints are not handled in a straightforward way if
the intersection of the a�ne constraint and the set D is not
simple.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T : Hp → Hv and
A : Hp → Hd are bounded
linear operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T : Hp → Hv and
A : Hp → Hd are bounded
linear operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T : Hp → Hv and
A : Hp → Hd are bounded
linear operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T : Hp → Hv and
A : Hp → Hd are bounded
linear operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T : Hp → Hv and
A : Hp → Hd are bounded
linear operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T : Hp → Hv and
A : Hp → Hd are bounded
linear operators.

Antonio Silveti-Falls The CGALP Algorithm

Relative Smoothness

Let F : H → R ∪ {+∞} and ζ :]0, 1]→ R+. The pair (f ,D),
where f : H → R ∪ {+∞} and D ⊂ dom(f), is said to be
(F , ζ)-smooth if there exists an open set D0 such that
D ⊂ D0 ⊂ int (dom (F)) and

F and f are di�erentiable on D0;

F − f is convex on D0;

The following holds,

K(F ,ζ,D) = sup
x ,s∈D; γ∈]0,1]
z=x+γ(s−x)

DF (z , x)

ζ (γ)
< +∞.

K(F ,ζ,D) is a far-reaching generalization of the standard curvature
constant.

Antonio Silveti-Falls The CGALP Algorithm

Relative Smoothness

Let F : H → R ∪ {+∞} and ζ :]0, 1]→ R+. The pair (f ,D),
where f : H → R ∪ {+∞} and D ⊂ dom(f), is said to be
(F , ζ)-smooth if there exists an open set D0 such that
D ⊂ D0 ⊂ int (dom (F)) and

F and f are di�erentiable on D0;

F − f is convex on D0;

The following holds,

K(F ,ζ,D) = sup
x ,s∈D; γ∈]0,1]
z=x+γ(s−x)

DF (z , x)

ζ (γ)
< +∞.

K(F ,ζ,D) is a far-reaching generalization of the standard curvature
constant.

Antonio Silveti-Falls The CGALP Algorithm

Moreau-Yosida Regularization

Given a closed, convex, proper function g , the Moreau envelope
(Moreau-Yosida regularization) of g is,

gβ (x) = min
y

g (y) +
1

2β
∥x − y∥2

The Moreau envelope is always Lipschitz-smooth.

Gradient is given by,

∇gβ (x) =
x − proxβg (x)

β

The proximal operator associated to g with parameter β is given by,

proxβg (x) = Argmin
y

g (y) +
1

2β
∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Moreau-Yosida Regularization

Given a closed, convex, proper function g , the Moreau envelope
(Moreau-Yosida regularization) of g is,

gβ (x) = min
y

g (y) +
1

2β
∥x − y∥2

The Moreau envelope is always Lipschitz-smooth.

Gradient is given by,

∇gβ (x) =
x − proxβg (x)

β

The proximal operator associated to g with parameter β is given by,

proxβg (x) = Argmin
y

g (y) +
1

2β
∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Moreau-Yosida Regularization

Given a closed, convex, proper function g , the Moreau envelope
(Moreau-Yosida regularization) of g is,

gβ (x) = min
y

g (y) +
1

2β
∥x − y∥2

The Moreau envelope is always Lipschitz-smooth.

Gradient is given by,

∇gβ (x) =
x − proxβg (x)

β

The proximal operator associated to g with parameter β is given by,

proxβg (x) = Argmin
y

g (y) +
1

2β
∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

What About the A�ne Constraint Ax = b?

Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩

which admits a so-called dual problem,

max
µ

min
x

f (x) + ⟨µ,Ax − b⟩

Augmented Lagrangian problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩ + ρ

2
∥Ax − b∥2

Antonio Silveti-Falls The CGALP Algorithm

What About the A�ne Constraint Ax = b?

Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩

which admits a so-called dual problem,

max
µ

min
x

f (x) + ⟨µ,Ax − b⟩

Augmented Lagrangian problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩ + ρ

2
∥Ax − b∥2

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

Example Parameters

General example: take, for k ∈ N,

ρk ≡ ρ > 0, γk =
1

(k + 1)1−b
, βk =

1

(k + 1)1−δ
, with

0 ≤ 2b < δ < 1, δ < 1− b, ρ > 22−b/c , c > 0.

Simple example: take, for k ∈ N,

ρ > 4, γk =
1

k + 1
, βk =

1√
k + 1

, θk = γk ,

i.e., b = 0, δ = 1

2
, c = 1.

Antonio Silveti-Falls The CGALP Algorithm

Example Parameters

General example: take, for k ∈ N,

ρk ≡ ρ > 0, γk =
1

(k + 1)1−b
, βk =

1

(k + 1)1−δ
, with

0 ≤ 2b < δ < 1, δ < 1− b, ρ > 22−b/c , c > 0.

Simple example: take, for k ∈ N,

ρ > 4, γk =
1

k + 1
, βk =

1√
k + 1

, θk = γk ,

i.e., b = 0, δ = 1

2
, c = 1.

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility

Theorem

Let (xk)k∈N be a sequence of iterates generated by CGALP for a

problem which satis�es the previous assumptions on both the

functions and the parameters. The the following holds,

Axk converges strongly to b, i.e.,

lim
k→∞

∥Axk − b∥ = 0

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility Rate

Pointwise rate:

inf
0≤i≤k

∥Axi − b∥ = O

(
1√
Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

∥Axkj − b∥ ≤ 1√
Γkj

,

where Γk =
∑k

i=0
γi .

Ergodic rate: let x̄k =
∑k

i=0
γixi/Γk . Then

∥Ax̄k − b∥ = O

(
1√
Γk

)

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility Rate

Pointwise rate:

inf
0≤i≤k

∥Axi − b∥ = O

(
1√
Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

∥Axkj − b∥ ≤ 1√
Γkj

,

where Γk =
∑k

i=0
γi .

Ergodic rate: let x̄k =
∑k

i=0
γixi/Γk . Then

∥Ax̄k − b∥ = O

(
1√
Γk

)

Antonio Silveti-Falls The CGALP Algorithm

Convergence to Optimality

Theorem

Let (xk)k∈N be the sequence of primal iterates generated by

CGALP and (x⋆, µ⋆) a saddle-point pair for the Lagrangian.

Assuming the problem satis�es the previous assumptions on both

the functions and the parameters, the following holds

Convergence of the Lagrangian:

lim
k→∞

L (xk , µ⋆) = L (x⋆, µ⋆)

Every weak cluster point x̃ of (xk)k∈N is a solution of the

primal problem, and (µk)k∈N is bounded.

Antonio Silveti-Falls The CGALP Algorithm

Convergence to Optimality

Theorem

Let (xk)k∈N be the sequence of primal iterates generated by

CGALP and (x⋆, µ⋆) a saddle-point pair for the Lagrangian.

Assuming the problem satis�es the previous assumptions on both

the functions and the parameters, the following holds

Convergence of the Lagrangian:

lim
k→∞

L (xk , µ⋆) = L (x⋆, µ⋆)

Every weak cluster point x̃ of (xk)k∈N is a solution of the

primal problem, and (µk)k∈N is bounded.

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

Pointwise rate:

inf
0≤i≤k

L (xi , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

L
(
xkj+1, µ

⋆
)
− L (x⋆, µ⋆) ≤ 1

Γkj

Ergodic rate: let x̄k =
∑k

i=0
γixi+1/Γk . Then

L (x̄k , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

Pointwise rate:

inf
0≤i≤k

L (xi , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

L
(
xkj+1, µ

⋆
)
− L (x⋆, µ⋆) ≤ 1

Γkj

Ergodic rate: let x̄k =
∑k

i=0
γixi+1/Γk . Then

L (x̄k , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)

Antonio Silveti-Falls The CGALP Algorithm

A Remark on Subsequential Rates

Our main result shows that

lim
k→∞

[
L (xk , µ⋆)− L (x⋆, µ⋆) +

ρk
2
∥Axk − b∥2

]
= 0

and, subsequentially,

L
(
xkj , µ

⋆
)
− L (x⋆, µ⋆) +

ρkj
2

∥∥Axkj − b
∥∥2 ≤ 1

Γkj

so that our subsequential rates are for the same subsequence.

Antonio Silveti-Falls The CGALP Algorithm

Simple Projection Problem

min
∥x∥1≤1

Ax=0

∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

100 101 102 103 104
k

10−3

10−2

10−1

100

(
̄x k
,μ

* ̄
−

(x

* ,
μ
* ̄

μ(1
log(k+2̄)

μ(1
(k+2̄b)

a= b=0
a=0, b=0.32333
a=1, b=0.32333

Ergodic convergence pro�le for various step size choices,

θk = γk =
(log (k + 2))a

(k + 1)1−b
, ρ = 22−b + 1

Antonio Silveti-Falls The CGALP Algorithm

Matrix Completion Problem

Consider the following matrix completion problem,

min
X∈RN×N

{
∥ΩX − y∥

1
: ∥X∥∗ ≤ δ1, ∥X∥1 ≤ δ2

}

Lift to a product space for CGALP :

min
X∈(RN×N)

2

{
G (ΩX) + H(X) : ΠV⊥X = 0

}
with

G (ΩX) =
1

2

(∥∥∥ΩX (1) − y
∥∥∥
1

+
∥∥∥ΩX (2) − y

∥∥∥
1

)
and

H(X) = ιBδ1
∗

(
X (1)

)
+ ιBδ2

1

(
X (2)

)

Antonio Silveti-Falls The CGALP Algorithm

Matrix Completion Problem

Consider the following matrix completion problem,

min
X∈RN×N

{
∥ΩX − y∥

1
: ∥X∥∗ ≤ δ1, ∥X∥1 ≤ δ2

}
Lift to a product space for CGALP :

min
X∈(RN×N)

2

{
G (ΩX) + H(X) : ΠV⊥X = 0

}
with

G (ΩX) =
1

2

(∥∥∥ΩX (1) − y
∥∥∥
1

+
∥∥∥ΩX (2) − y

∥∥∥
1

)
and

H(X) = ιBδ1
∗

(
X (1)

)
+ ιBδ2

1

(
X (2)

)
Antonio Silveti-Falls The CGALP Algorithm

Direction Finding Step (2 components)

S
(1)
k ∈ Argmin

S(1)∈Bδ1
∥·∥∗

〈
Ω∗

(
ΩX

(1)
k − y − prox βk

2
∥·∥1

(
ΩX

(1)
k − y

))
βk

+
1

2

(
µ
(1)
k − µ

(2)
k + ρk

(
X

(1)
k − X

(2)
k

))
,S (1)

〉

S
(2)
k ∈ Argmin

S(2)∈Bδ2
∥·∥1

〈
Ω∗

(
ΩX

(2)
k − y − prox βk

2
∥·∥1

(
ΩX

(2)
k − y

))
βk

+
1

2

(
µ
(2)
k − µ

(1)
k + ρk

(
X

(2)
k − X

(1)
k

))
,S (2)

〉

Antonio Silveti-Falls The CGALP Algorithm

Direction Finding Step (2 components)

S
(1)
k ∈ Argmin

S(1)∈Bδ1
∥·∥∗

〈
Ω∗

(
ΩX

(1)
k − y − prox βk

2
∥·∥1

(
ΩX

(1)
k − y

))
βk

+
1

2

(
µ
(1)
k − µ

(2)
k + ρk

(
X

(1)
k − X

(2)
k

))
,S (1)

〉

S
(2)
k ∈ Argmin

S(2)∈Bδ2
∥·∥1

〈
Ω∗

(
ΩX

(2)
k − y − prox βk

2
∥·∥1

(
ΩX

(2)
k − y

))
βk

+
1

2

(
µ
(2)
k − µ

(1)
k + ρk

(
X

(2)
k − X

(1)
k

))
,S (2)

〉

Antonio Silveti-Falls The CGALP Algorithm

CGALP Ergodic Convergence Rate

100 101 102 103

k

100

101

102

(X̄

k,
μ

*)
−

(X

* ,
μ

*)

μ(1
log(k))

N̄=̄128
N̄=̄64
N̄=̄32

Ergodic convergence pro�les for CGALP.

Antonio Silveti-Falls The CGALP Algorithm

Can We Extend the Algorithm?

What if we have noise?

On the computation of

∇f (xk) +
T∗

(
Txk−proxβk g (Txk)

)
βk

+ ρkA
∗ (Axk − b)? (λz

k)

On the linear minimization oracle itself? (λs
k)

Antonio Silveti-Falls The CGALP Algorithm

Can We Extend the Algorithm?

What if we have noise?

On the computation of

∇f (xk) +
T∗

(
Txk−proxβk g (Txk)

)
βk

+ ρkA
∗ (Axk − b)? (λz

k)

On the linear minimization oracle itself? (λs
k)

Antonio Silveti-Falls The CGALP Algorithm

Inexact CGALP

Algorithm: ICGALP

Input: x0 ∈ D
def
= dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,

(θk)k∈N , (ρk)k∈N ∈ ℓ+, k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) + T ∗ (Txk − yk) /βk + A∗µk + ρkA
∗ (Axk − b) + λz

k

sk ∈ Argmins∈Hp
{h (s) + ⟨zk , s⟩}

ŝk ∈ {s : ⟨s, zk⟩ + h (s) ≤ ⟨sk , zk⟩ + h (sk) + λs
k}

xk+1 = xk − γk (xk − ŝk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;

Antonio Silveti-Falls The CGALP Algorithm

Inexact CGALP

Algorithm: ICGALP

Input: x0 ∈ D
def
= dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,

(θk)k∈N , (ρk)k∈N ∈ ℓ+, k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) + T ∗ (Txk − yk) /βk + A∗µk + ρkA
∗ (Axk − b) + λz

k

sk ∈ Argmins∈Hp
{h (s) + ⟨zk , s⟩}

ŝk ∈ {s : ⟨s, zk⟩ + h (s) ≤ ⟨sk , zk⟩ + h (sk) + λs
k}

xk+1 = xk − γk (xk − ŝk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;

Antonio Silveti-Falls The CGALP Algorithm

Inexact CGALP

Algorithm: ICGALP

Input: x0 ∈ D
def
= dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,

(θk)k∈N , (ρk)k∈N ∈ ℓ+, k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) + T ∗ (Txk − yk) /βk + A∗µk + ρkA
∗ (Axk − b) + λz

k

sk ∈ Argmins∈Hp
{h (s) + ⟨zk , s⟩}

ŝk ∈ {s : ⟨s, zk⟩ + h (s) ≤ ⟨sk , zk⟩ + h (sk) + λs
k}

xk+1 = xk − γk (xk − ŝk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;

Antonio Silveti-Falls The CGALP Algorithm

Technical Setup

Let λz
k and λs

k be random variables from (Ω,F ,P) to Hp and R+

respectively.
De�ne the �ltration S

def
= (Sk)k∈N where Sk

def
= σ (x0, µ0, ŝ0, . . . , ŝk)

is the σ-algebra generated by the random variables x0, µ0, ŝ0, . . . , ŝk .

We will assume:(
γk+1E

[∥∥λz
k+1

∥∥ | Sk])
k∈N
∈ ℓ1+ (S)(

γk+1E
[
λs
k+1
| Sk

])
k∈N ∈ ℓ1+ (S)

We can further re�ne these assumptions by decomposing λz
k+1

depending on the structure of the noise, e.g.
λz
k+1

= λf
k+1
− T ∗λg

k+1
/βk+1 + ρkλ

A
k+1

where λf
k+1

, λg
k+1

, and

λA
k+1

represent the error in computing ∇f (xk+1),
proxβk+1g

(Txk+1) and A∗ (Axk − b) respectively.

Antonio Silveti-Falls The CGALP Algorithm

Technical Setup

Let λz
k and λs

k be random variables from (Ω,F ,P) to Hp and R+

respectively.
De�ne the �ltration S

def
= (Sk)k∈N where Sk

def
= σ (x0, µ0, ŝ0, . . . , ŝk)

is the σ-algebra generated by the random variables x0, µ0, ŝ0, . . . , ŝk .
We will assume:(

γk+1E
[∥∥λz

k+1

∥∥ | Sk])
k∈N
∈ ℓ1+ (S)(

γk+1E
[
λs
k+1
| Sk

])
k∈N ∈ ℓ1+ (S)

We can further re�ne these assumptions by decomposing λz
k+1

depending on the structure of the noise, e.g.
λz
k+1

= λf
k+1
− T ∗λg

k+1
/βk+1 + ρkλ

A
k+1

where λf
k+1

, λg
k+1

, and

λA
k+1

represent the error in computing ∇f (xk+1),
proxβk+1g

(Txk+1) and A∗ (Axk − b) respectively.

Antonio Silveti-Falls The CGALP Algorithm

Technical Setup

Let λz
k and λs

k be random variables from (Ω,F ,P) to Hp and R+

respectively.
De�ne the �ltration S

def
= (Sk)k∈N where Sk

def
= σ (x0, µ0, ŝ0, . . . , ŝk)

is the σ-algebra generated by the random variables x0, µ0, ŝ0, . . . , ŝk .
We will assume:(

γk+1E
[∥∥λz

k+1

∥∥ | Sk])
k∈N
∈ ℓ1+ (S)(

γk+1E
[
λs
k+1
| Sk

])
k∈N ∈ ℓ1+ (S)

We can further re�ne these assumptions by decomposing λz
k+1

depending on the structure of the noise, e.g.
λz
k+1

= λf
k+1
− T ∗λg

k+1
/βk+1 + ρkλ

A
k+1

where λf
k+1

, λg
k+1

, and

λA
k+1

represent the error in computing ∇f (xk+1),
proxβk+1g

(Txk+1) and A∗ (Axk − b) respectively.

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility

Theorem (Feasibility)

Let (xk)k∈N be a sequence of iterates generated by ICGALP for a

problem which satis�es the previous assumptions on both the

functions, the parameters, and the noise. The the following holds,

Asymptotic feasbility: lim
k→∞

∥Axk − b∥ = 0 (P-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility Rate

Pointwise rate:

inf
0≤i≤k

∥Axi − b∥ = O

(
1√
Γk

)
(P-a.s.) .

Furthermore, ∃ a subsequence
(
xkj

)
j∈N such that

∥Axkj − b∥ ≤ 1√
Γkj

(P-a.s.) ,

where Γk
def
=

∑k
i=0

γi .

Ergodic rate: let x̄k
def
=

∑k
i=0

γixi/Γk . Then

∥Ax̄k − b∥ = O

(
1√
Γk

)
(P-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility Rate

Pointwise rate:

inf
0≤i≤k

∥Axi − b∥ = O

(
1√
Γk

)
(P-a.s.) .

Furthermore, ∃ a subsequence
(
xkj

)
j∈N such that

∥Axkj − b∥ ≤ 1√
Γkj

(P-a.s.) ,

where Γk
def
=

∑k
i=0

γi .

Ergodic rate: let x̄k
def
=

∑k
i=0

γixi/Γk . Then

∥Ax̄k − b∥ = O

(
1√
Γk

)
(P-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm

Convergence to Optimality

Theorem (Optimality)

Let (xk)k∈N be the sequence of primal iterates generated by

ICGALP and (x⋆, µ⋆) a saddle-point pair for the Lagrangian.

Assuming the problem satis�es the previous assumptions on both

the functions, the parameters, and the noise, the following holds

Convergence of the Lagrangian:

lim
k→∞

L (xk , µ⋆) = L (x⋆, µ⋆) (P-a.s.) . (1)

Every weak cluster point x̃ of (xk)k∈N is a solution of the

primal problem and (µk)k∈N is bounded (P-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm

Convergence to Optimality

Theorem (Optimality)

Let (xk)k∈N be the sequence of primal iterates generated by

ICGALP and (x⋆, µ⋆) a saddle-point pair for the Lagrangian.

Assuming the problem satis�es the previous assumptions on both

the functions, the parameters, and the noise, the following holds

Convergence of the Lagrangian:

lim
k→∞

L (xk , µ⋆) = L (x⋆, µ⋆) (P-a.s.) . (1)

Every weak cluster point x̃ of (xk)k∈N is a solution of the

primal problem and (µk)k∈N is bounded (P-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

Pointwise rate:

inf
0≤i≤k

L (xi , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
(P-a.s.) .

Furthermore, ∃ a subsequence
(
xkj

)
j∈N s.t.

L
(
xkj+1, µ

⋆
)
− L (x⋆, µ⋆) ≤ 1

Γkj
(P-a.s.) .

Ergodic rate: let x̄k
def
=

∑k
i=0

γixi+1/Γk . Then

L (x̄k , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
(P-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

Pointwise rate:

inf
0≤i≤k

L (xi , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
(P-a.s.) .

Furthermore, ∃ a subsequence
(
xkj

)
j∈N s.t.

L
(
xkj+1, µ

⋆
)
− L (x⋆, µ⋆) ≤ 1

Γkj
(P-a.s.) .

Ergodic rate: let x̄k
def
=

∑k
i=0

γixi+1/Γk . Then

L (x̄k , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
(P-a.s.) .

Antonio Silveti-Falls The CGALP Algorithm

Model Problem

Consider the following risk minimization problem,

min
x∈C⊂H
Ax=b

f (x)
[

def
= E [L (x , η)]

]
assuming that

∇f is Hölder-continuous with constant Cf and exponent τf .

∇xL (·, η) is Hölder-continuous for every η with constant Cf
and exponent τf , η being a random variable.

∇f (x) = E [∇xL (x , η)] (P-a.e.).

Antonio Silveti-Falls The CGALP Algorithm

Growing Batch Size

At each iteration k ∈ N, we compute the average of a batch of
n (k) samples of the gradient,

∇̂f k
def
=

1

n (k)

n(k)∑
i=1

∇xL (xk , ηi)

We make the assumption each ηi is i.i.d. according to a �xed
distribution and that the number of samples in each batch k can
vary with k (growing).
If n (k) grows su�ciently fast, i.e. like γ−2τf

k , then the summability
condition for the error is met,(

γk+1E
[∥∥λz

k+1

∥∥ | Sk])k∈N ∈ ℓ1+ (S)

Antonio Silveti-Falls The CGALP Algorithm

Growing Batch Size

At each iteration k ∈ N, we compute the average of a batch of
n (k) samples of the gradient,

∇̂f k
def
=

1

n (k)

n(k)∑
i=1

∇xL (xk , ηi)

We make the assumption each ηi is i.i.d. according to a �xed
distribution and that the number of samples in each batch k can
vary with k (growing).

If n (k) grows su�ciently fast, i.e. like γ−2τf
k , then the summability

condition for the error is met,(
γk+1E

[∥∥λz
k+1

∥∥ | Sk])k∈N ∈ ℓ1+ (S)

Antonio Silveti-Falls The CGALP Algorithm

Growing Batch Size

At each iteration k ∈ N, we compute the average of a batch of
n (k) samples of the gradient,

∇̂f k
def
=

1

n (k)

n(k)∑
i=1

∇xL (xk , ηi)

We make the assumption each ηi is i.i.d. according to a �xed
distribution and that the number of samples in each batch k can
vary with k (growing).
If n (k) grows su�ciently fast, i.e. like γ−2τf

k , then the summability
condition for the error is met,(

γk+1E
[∥∥λz

k+1

∥∥ | Sk])k∈N ∈ ℓ1+ (S)

Antonio Silveti-Falls The CGALP Algorithm

Variance Reduction

Fix γk = 1

(k+1)1−b and introduce a weight νk = γ
2
3
τf

k . Recursively

de�ne,

∇̂f k
def
= (1− νk) ∇̂f k−1 + νk∇xL (xk , ηk) ; ∇̂f −1 = 0

Here the batch size need not grow, it may even be 1 for all k . The
choice of b is more restricted in order to meet summability
conditions, we must take b < 1−

(
1+ τf

3

)−1
to ful�ll(

γk+1E
[∥∥λz

k+1

∥∥ | Sk])k∈N ∈ ℓ1+ (S)

Antonio Silveti-Falls The CGALP Algorithm

Variance Reduction

Fix γk = 1

(k+1)1−b and introduce a weight νk = γ
2
3
τf

k . Recursively

de�ne,

∇̂f k
def
= (1− νk) ∇̂f k−1 + νk∇xL (xk , ηk) ; ∇̂f −1 = 0

Here the batch size need not grow, it may even be 1 for all k . The
choice of b is more restricted in order to meet summability
conditions, we must take b < 1−

(
1+ τf

3

)−1
to ful�ll(

γk+1E
[∥∥λz

k+1

∥∥ | Sk])k∈N ∈ ℓ1+ (S)

Antonio Silveti-Falls The CGALP Algorithm

Deterministic Sweeping for Finite Sum Minimization

For �nite sum minimization problems of the form

min
x∈C⊂H
Ax=b

1

n

n∑
i=1

fi (x)

with n > 1 �xed and each fi Hölder-smooth with constant Cf and
exponent τf .

Requires computing the gradient of a single fi at each iteration and
keeping a running average of past n sampled gradients.

Antonio Silveti-Falls The CGALP Algorithm

Deterministic Sweeping for Finite Sum Minimization

For �nite sum minimization problems of the form

min
x∈C⊂H
Ax=b

1

n

n∑
i=1

fi (x)

with n > 1 �xed and each fi Hölder-smooth with constant Cf and
exponent τf .
Requires computing the gradient of a single fi at each iteration and
keeping a running average of past n sampled gradients.

Antonio Silveti-Falls The CGALP Algorithm

Deterministic Sweeping for Finite Sum Minimization

∇̂f 0 =
1

n
(0+ 0+ . . . +0)

∇̂f 1 =
1

n
(∇f1 (x1)+ 0+ . . . +0)

∇̂f 2 =
1

n
(∇f1 (x1)+ ∇f2 (x2) + . . . +0)

...

∇̂f n+1 =
1

n
(∇f1 (xn+1)+ ∇f2 (x2) + . . . +∇fn (xn))

∇̂f n+2 =
1

n
(∇f1 (xn+1)+ ∇f2 (xn+2) + . . . +∇fn (xn))

...

Antonio Silveti-Falls The CGALP Algorithm

Deterministic Sweeping for Finite Sum Minimization

∇̂f 0 =
1

n
(0+ 0+ . . . +0)

∇̂f 1 =
1

n
(∇f1 (x1)+ 0+ . . . +0)

∇̂f 2 =
1

n
(∇f1 (x1)+ ∇f2 (x2) + . . . +0)

...

∇̂f n+1 =
1

n
(∇f1 (xn+1)+ ∇f2 (x2) + . . . +∇fn (xn))

∇̂f n+2 =
1

n
(∇f1 (xn+1)+ ∇f2 (xn+2) + . . . +∇fn (xn))

...

Antonio Silveti-Falls The CGALP Algorithm

Deterministic Sweeping for Finite Sum Minimization

∇̂f 0 =
1

n
(0+ 0+ . . . +0)

∇̂f 1 =
1

n
(∇f1 (x1)+ 0+ . . . +0)

∇̂f 2 =
1

n
(∇f1 (x1)+ ∇f2 (x2) + . . . +0)

...

∇̂f n+1 =
1

n
(∇f1 (xn+1)+ ∇f2 (x2) + . . . +∇fn (xn))

∇̂f n+2 =
1

n
(∇f1 (xn+1)+ ∇f2 (xn+2) + . . . +∇fn (xn))

...

Antonio Silveti-Falls The CGALP Algorithm

Deterministic Sweeping for Finite Sum Minimization

∇̂f 0 =
1

n
(0+ 0+ . . . +0)

∇̂f 1 =
1

n
(∇f1 (x1)+ 0+ . . . +0)

∇̂f 2 =
1

n
(∇f1 (x1)+ ∇f2 (x2) + . . . +0)

...

∇̂f n+1 =
1

n
(∇f1 (xn+1)+ ∇f2 (x2) + . . . +∇fn (xn))

∇̂f n+2 =
1

n
(∇f1 (xn+1)+ ∇f2 (xn+2) + . . . +∇fn (xn))

...

Antonio Silveti-Falls The CGALP Algorithm

Deterministic Sweeping for Finite Sum Minimization

∇̂f 0 =
1

n
(0+ 0+ . . . +0)

∇̂f 1 =
1

n
(∇f1 (x1)+ 0+ . . . +0)

∇̂f 2 =
1

n
(∇f1 (x1)+ ∇f2 (x2) + . . . +0)

...

∇̂f n+1 =
1

n
(∇f1 (xn+1)+ ∇f2 (x2) + . . . +∇fn (xn))

∇̂f n+2 =
1

n
(∇f1 (xn+1)+ ∇f2 (xn+2) + . . . +∇fn (xn))

...

Antonio Silveti-Falls The CGALP Algorithm

Projection Problem with Sampling

We apply the variance reduction method and the sweeping method
to the projection problem,

min
∥x∥1≤1

Ax=0

1

2n
∥x − y∥2

by letting η take value in {1, . . . , n} with L (x , η) = 1

2
(xη − yη) and

fi (x) =
1

2
(xi − yi)

2 respectively.

Since the objective is Lipschitz-smooth we have τf = 1 and α = 2

3
.

We take γk = 1

(k+1)1−b , ρk ≡ ρ = 22−b + 1, θk = γk .

Antonio Silveti-Falls The CGALP Algorithm

Projection Problem with Sampling

We apply the variance reduction method and the sweeping method
to the projection problem,

min
∥x∥1≤1

Ax=0

1

2n
∥x − y∥2

by letting η take value in {1, . . . , n} with L (x , η) = 1

2
(xη − yη) and

fi (x) =
1

2
(xi − yi)

2 respectively.
Since the objective is Lipschitz-smooth we have τf = 1 and α = 2

3
.

We take γk = 1

(k+1)1−b , ρk ≡ ρ = 22−b + 1, θk = γk .

Antonio Silveti-Falls The CGALP Algorithm

Optimality - Big Step Size

102 103 104 105
k

10−2

|
̄x k
−
x
⋆
|2

Optimality
CGALP
Sweep̄∇xfi(xk)
VR ingle ∇xfi(xk)
VR mall batch ∇xfi(xk)
VR big batch ∇xfi(xk)
VR mall batch ∇xfi(xk) + ρk(A *Axk)(i)

VR big batch ∇xfi(xk) + ρk(A *Axk)(i)

O(1
(k+1)0.24)

The step size is γk = (k + 1)−(1−
1
4
+0.01) and the weight for

variance reduction is νk = γ
2/3
k .

Antonio Silveti-Falls The CGALP Algorithm

Feasibility - Big Step Size

102 103 104 105

k

10−5

10−4

|A
̄x k
|2

Feasibility
CGALP
Sweep ∇xfi(xk)
VR ingle ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O(1
(k+1)0.24)

The step size is γk = (k + 1)−(1−
1
4
+0.01) and the weight for

variance reduction is νk = γ
2/3
k .

Antonio Silveti-Falls The CGALP Algorithm

Optimality - Small Step Size

102 103 104 105
k

10−2|
̄x k
−
x
⋆
|2

Optimality
CGALP
Sweep̄∇xfi(xk)
VR ingle ∇xfi(xk)
VR mall batch ∇xfi(xk)
VR big batch ∇xfi(xk)
VR mall batch ∇xfi(xk) + ρk(A *Axk)(i)

VR big batch ∇xfi(xk) + ρk(A *Axk)(i)

O(1
(k+1)0.1)

The step size is γk = (k + 1)−(1−
1
4
+0.15) and the weight for

variance reduction is νk = γ
2/3
k .

Antonio Silveti-Falls The CGALP Algorithm

Feasibility - Small Step Size

102 103 104 105

k

10−4

10−3

|A
̄x k
|2

Feasibility
CGALP
Sweep ∇xfi(xk)
VR ingle ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O(1
(k+1)0.1)

The step size is γk = (k + 1)−(1−
1
4
+0.15) and the weight for

variance reduction is νk = γ
2/3
k .

Antonio Silveti-Falls The CGALP Algorithm

Thanks for Listening

Thanks for listening.

Full paper available on arxiv: https://arxiv.org/abs/ 2005.05158

"Inexact and Stochastic Generalized Conditional Gradient with
Augmented Lagrangian and Proximal Step" - Antonio Silveti-Falls,

Cesare Molinari, Jalal Fadili.

Special thanks to Cesare Molinari for the invitation to give this talk.

Antonio Silveti-Falls The CGALP Algorithm

