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Implicit Functions

Consider the smooth function

F (x , y) = x2 + y2 − 1

and the equation

F (x , y) = 0.

Can we �nd a function
y = G (x) so that
F (x ,G (x)) = 0?

Existence

Can we compute the
gradient of G?

Calculus

y

x

F (x, y) = 0
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Locally Lipschitz Functions and the Clarke Subdi�erential

De�nition (Locally Lipschitz-continuous)

A function F : Rn → Rm is locally Lipschitz-continuous if, ∀x ∈ Rn,
∃ a neighborhood U ⊂ Rn of x and c > 0 such that, ∀y , z ∈ U,

‖F (z)− F (y)‖ ≤ c ‖z − y‖ .

De�nition (Clarke subdi�erential (1983))

Given a locally Lipschitz function F : Rn → Rm, the Clarke
subdi�erential at a point x ∈ Rn is

∂cF (x) = conv
({

lim
k→∞

JF (xk) : xk ∈ diffF and xk → x

})
.
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Locally Lipschitz Functions and the Clarke Subdi�erential
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F (x)
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Locally Lipschitz Functions and the Clarke Subdi�erential
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Nonsmooth Implicit Function Theorem of Clarke

Theorem (Clarke 1983)

Let F : Rn × Rm → Rm be

locally Lipschitz and

(x̂ , ŷ) ∈ Rn ×Rm such that

F (x̂ , ŷ) = 0.

If, ∀[A B] ∈ ∂cF (x̂ , ŷ), B
is invertible, then ∃U ⊂ Rn

a neighborhood of x̂ and a

locally Lipschitz function

G (x) so that

F (x ,G (x)) = 0 ∀x ∈ U.

y

x

F (x, y) = 0
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Lack of Calculus

Let F : Rn × Rm → Rm be locally Lipschitz and (x̂ , ŷ) ∈ Rn × Rm

such that Clarke's IFT holds with implicit function G (x).

Recall from smooth IFT: JG (x) = −B−1A [A B] = JF (x ,G (x)).

Question

Does it hold{
−B−1A : [A B] ∈ ∂cF (x̂ , ŷ)

}
= ∂cG (x) ?

No - need something beyond ∂c .
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Conservative Fields

De�nition (Conservative �eld (Bolte-Pauwels 2019))

A set valued mapping DF : Rn ⇒ Rn is a conservative �eld (or
conservative Jacobian) for F : Rn → R locally Lipschitz if:

1 For all x ∈ Rn, DF (x) is nonempty (ideally convex!).

2 DF has a closed graph and is locally bounded.

3 For any absolutely continuous curve γ : [0, 1]→ Rn,

d

dt
F (γ (t)) = 〈u, γ̇(t)〉 ∀u ∈ DF (γ(t))

for almost all t ∈ [0, 1].

We call F path di�erentiable.
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Path Di�erentiable Nonsmooth Implicit Function Theorem

Theorem

Let F : Rn × Rm → Rm be path di�erentiable and

(x̂ , ŷ) ∈ Rn × Rm be such that

F (x̂ , ŷ) = 0.

Assume DF (x̂ , ŷ) is convex and ∀[A B] ∈ DF (x̂ , ŷ), B is

invertible.

Then ∃U ⊂ Rn a neighborhood of x̂ and a path di�erentiable

function G such that

∀x ∈ U F (x ,G (x)) = 0.

The conservative Jacobian of G is given by

DG (x) =
{
−B−1A : [A B] ∈ DF (x ,G (x))

}
.
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Deep Learning with Implicit Layers

x y⋆ : F (x, y⋆) = 0 z⋆ ∈ argminz G(z, y⋆)

Implicit Layer Optimization Layer

. . .

Deep equilibrium networks [Shaojie Bai, J. Zico Kolter, Vladlen
Koltun 2019], Monotone deep equlibirium networks [Ezra
Winston, J. Zico Kolter 2020].

Optimization layers (OptNET) [Brandon Amos, J. Zico Kolter
2017].

Convergence guarantees for training.
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Pathological Examples - Cycles

Gradient descent type algorithm (using backprop) applied to:

min
x ,y ,s

` (x , y , s)
def
= (x − s1)

2 + 4 (y − s2)
2

s.t. s ∈ argmax {(a+ b) (−2x + y + 2) : a ∈ [0, 3], b ∈ [0, 5]} .
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Pathological Examples - Lorenz Attractor

For u ∈ R3, de�ne L(u)
def
=

(
10(y − x), x(28− z)− y , xy − 8

3
z
)
.

Implicit formulation

max
u∈R3

uT z s.t.

z ∈ argmin
s∈R3

‖s − L(u)‖4

Explicit (vanilla) formulation

max
u∈R3

uTL(u)
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Thanks for Listening

Thanks for listening.

Full paper available on arxiv: https://arxiv.org/abs/ 2106.04350
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