Nonsmooth Implicit Differentiation for Machine Learning

Jérôme Bolte, Tam Le, Edouard Pauwels, and Antonio Silveti-Falls

Neurips Poster (2021)

- Smooth implicit function theorem.
- **2** Nonsmooth implicit function theorem of Clarke.
- Path differentiable nonsmooth implicit function theorem (with calculus).
- Applications
- What can go wrong?

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

5900

3

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

nan

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

• Can we compute the gradient of *G*?

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

• Can we compute the gradient of *G*?

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

Existence

• Can we compute the gradient of *G*?

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

Existence

• Can we compute the gradient of *G*?

Definition (Locally Lipschitz-continuous)

A function $F : \mathbb{R}^n \to \mathbb{R}^m$ is locally Lipschitz-continuous if, $\forall x \in \mathbb{R}^n$, \exists a neighborhood $U \subset \mathbb{R}^n$ of x and c > 0 such that, $\forall y, z \in U$,

 $\|F(z)-F(y)\| \leq c \|z-y\|.$

Definition (Locally Lipschitz-continuous)

A function $F : \mathbb{R}^n \to \mathbb{R}^m$ is locally Lipschitz-continuous if, $\forall x \in \mathbb{R}^n$, \exists a neighborhood $U \subset \mathbb{R}^n$ of x and c > 0 such that, $\forall y, z \in U$,

 $\|F(z)-F(y)\| \leq c \|z-y\|.$

Definition (Clarke subdifferential (1983))

Given a locally Lipschitz function $F : \mathbb{R}^n \to \mathbb{R}^m$, the Clarke subdifferential at a point $x \in \mathbb{R}^n$ is

$$\partial^{c}F(x) = \operatorname{conv}\left(\left\{\lim_{k\to\infty}J_{F}(x_{k}): x_{k}\in \operatorname{diff}_{F} \text{ and } x_{k}\to x\right\}\right).$$

Theorem (Clarke 1983)

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

 $F(\hat{x},\hat{y})=0.$

$$F(x, G(x)) = 0 \quad \forall x \in U.$$

Theorem (Clarke 1983)

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

 $F(\hat{x},\hat{y})=0.$

$$F(x, G(x)) = 0 \quad \forall x \in U.$$

Theorem (Clarke 1983)

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

 $F(\hat{x},\hat{y})=0.$

$$F(x, G(x)) = 0 \qquad \forall x \in U.$$

Theorem (Clarke 1983)

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

 $F(\hat{x},\hat{y})=0.$

$$F(x, G(x)) = 0 \qquad \forall x \in U.$$

∃ >

Э

Recall from smooth IFT: $J_G(x) = -B^{-1}A$ $[A B] = J_F(x, G(x)).$

1

Recall from smooth IFT: $J_G(x) = -B^{-1}A$ $[A B] = J_F(x, G(x)).$

Question

Does it hold

$$\left\{-B^{-1}A: [A B] \in \partial^c F(\hat{x}, \hat{y})\right\} = \partial^c G(x)$$
 ?

伺下 イヨト イヨト

1

Recall from smooth IFT: $J_G(x) = -B^{-1}A$ $[A B] = J_F(x, G(x)).$

Question

Does it hold

$$\left\{-B^{-1}A: [A B] \in \partial^{c}F(\hat{x}, \hat{y})\right\} = \partial^{c}G(x) ?$$

No - need something beyond ∂^c .

伺下 イヨト イヨト

-

A set valued mapping $D_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

A set valued mapping $D_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

• For all $x \in \mathbb{R}^n$, $D_F(x)$ is nonempty (ideally convex!).

A set valued mapping $D_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

- For all $x \in \mathbb{R}^n$, $D_F(x)$ is nonempty (ideally convex!).
- 2 D_F has a closed graph and is locally bounded.

A set valued mapping $D_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

- For all $x \in \mathbb{R}^n$, $D_F(x)$ is nonempty (ideally convex!).
- 2 D_F has a closed graph and is locally bounded.
- $\textbf{ Sor any absolutely continuous curve } \gamma: [0,1] \rightarrow \mathbb{R}^n,$

$$rac{d}{dt}F\left(\gamma\left(t
ight)
ight)=\left\langle u,\dot{\gamma}(t)
ight
angle \qquadorall u\in D_{F}\left(\gamma(t)
ight)$$

for almost all $t \in [0, 1]$. We call F path differentiable.

Theorem

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path differentiable and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

 $F\left(\hat{x},\hat{y}\right)=0.$

Theorem

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path differentiable and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

 $F\left(\hat{x},\hat{y}\right)=0.$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A B] \in D_F(\hat{x}, \hat{y})$, B is invertible.

Theorem

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path differentiable and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

 $F\left(\hat{x},\hat{y}\right)=0.$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A B] \in D_F(\hat{x}, \hat{y})$, B is invertible.

Theorem

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path differentiable and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

$$F\left(\hat{x},\hat{y}\right)=0.$$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A B] \in D_F(\hat{x}, \hat{y})$, B is invertible.

Then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a path differentiable function G such that

$$\forall x \in U \qquad F(x, G(x)) = 0.$$

Theorem

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path differentiable and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

$$F\left(\hat{x},\hat{y}\right)=0.$$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A B] \in D_F(\hat{x}, \hat{y})$, B is invertible.

Then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a path differentiable function G such that

$$\forall x \in U \qquad F(x, G(x)) = 0.$$

The conservative Jacobian of G is given by

$$D_{G}(x) = \{-B^{-1}A : [A B] \in D_{F}(x, G(x))\}$$

Deep Learning with Implicit Layers

- Deep equilibrium networks [Shaojie Bai, J. Zico Kolter, Vladlen Koltun 2019], Monotone deep equilibrium networks [Ezra Winston, J. Zico Kolter 2020].
- Optimization layers (OptNET) [Brandon Amos, J. Zico Kolter 2017].

nan

Deep Learning with Implicit Layers

- Deep equilibrium networks [Shaojie Bai, J. Zico Kolter, Vladlen Koltun 2019], Monotone deep equilibrium networks [Ezra Winston, J. Zico Kolter 2020].
- Optimization layers (OptNET) [Brandon Amos, J. Zico Kolter 2017].
- Convergence guarantees for training.

Pathological Examples - Cycles

Gradient descent type algorithm (using backprop) applied to:

$$\min_{\substack{x,y,s \\ s,t. \\ s \in arg \max \{(a+b)(-2x+y+2) : a \in [0,3], b \in [0,5]\}}.$$

Pathological Examples - Lorenz Attractor

For
$$u \in \mathbb{R}^3$$
, define $L(u) \stackrel{\text{\tiny def}}{=} (10(y-x), x(28-z)-y, xy-\frac{8}{3}z)$.

Thanks for listening.

Full paper available on arxiv: https://arxiv.org/abs/ 2106.04350

"Nonsmooth Implicit Differentiation for Machine Learning and Optimization" - Jérôme Bolte, Ngoc Tâm Lê, Edouard Pauwels, Antonio Silveti-Falls