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Smooth implicit function theorem.
Nonsmooth implicit function theorem of Clarke.

Path differentiable nonsmooth implicit function theorem (with
calculus).

Applications
What can go wrong?
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Implicit Functions

Consider the smooth function
Fix,y) =x*+y? —1
and the equation

F(Ivy):
F(x,y)=0.
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Implicit Functions
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@ Can we find a function
y = G(x) so that
F(x,G(x)) =07
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gradient of G?
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Implicit Functions

Consider the smooth function
Fix,y) =x*+y? —1
and the equation

F(x,y) =o0. et

@ Can we find a function
y = G(x) so that
F(x,G(x)) =07

Existence

o Can we compute the
gradient of G7
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Locally Lipschitz Functions and the Clarke Subdifferential

Definition (Locally Lipschitz-continuous)

A function F : R” — R™ is locally Lipschitz-continuous if, Vx € R”",
3 a neighborhood U C R” of x and ¢ > 0 such that, Vy,z € U,

IF(z) = F)Il < cllz =yl
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Locally Lipschitz Functions and the Clarke Subdifferential

Definition (Locally Lipschitz-continuous)

A function F : R” — R™ is locally Lipschitz-continuous if, Vx € R”",
3 a neighborhood U C R” of x and ¢ > 0 such that, Vy,z € U,

IF(z) = F)Il < cllz =yl

Definition (Clarke subdifferential (1983))

Given a locally Lipschitz function F : R” — R™, the Clarke
subdifferential at a point x € R" is

9°F(x) = conv ({klim Je(xk) @ xx € diffr and xx — x}) :
—00
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Locally Lipschitz Functions and the Clarke Subdifferential

F

sy

) v

O°F(x) = conv <{klim Jr(xk) @ xx € diff g and xx — x})
— 00
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Nonsmooth Implicit Function Theorem of Clarke

Theorem (Clarke 1983)

Let F:R" x R™ — R™ pe Ay
locally Lipschitz and
(%,9) € R" x R™ such that Flz,y) =

F(%,9)=0.

If, V[A B] € O°F(%X,y), B
is invertible, then U C R"
a neighborhood of X and a
locally Lipschitz function
G(x) so that

F(x,G(x)) =0 Vx e U.
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Lack of Calculus

Let F: R” x R™ — R™ be locally Lipschitz and (%,y) € R” x R™
such that Clarke’s IFT holds with implicit function G(x).
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Lack of Calculus

Let F: R” x R™ — R™ be locally Lipschitz and (%,y) € R” x R™
such that Clarke’s IFT holds with implicit function G(x).

Recall from smooth IFT: Jg (x) = —B7A [A B] = Jg(x, G(x)).
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such that Clarke’s IFT holds with implicit function G(x).
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Lack of Calculus

Let F: R” x R™ — R™ be locally Lipschitz and (%,y) € R” x R™
such that Clarke’s IFT holds with implicit function G(x).

Recall from smooth IFT: Jg (x) = —B7A [A B] = Jg(x, G(x)).

Question
Does it hold

{-B'A:[A Bl € 9°F(&,9)} = 0°G(x) ?

No - need something beyond 0¢.
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Conservative Fields

Definition (Conservative field (Bolte-Pauwels 2019))

A set valued mapping Dg : R” = R" is a conservative field (or
conservative Jacobian) for F : R” — R locally Lipschitz if:
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A set valued mapping Dg : R” = R" is a conservative field (or
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@ For all x € R", De(x) is nonempty (ideally convex!).
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Conservative Fields

Definition (Conservative field (Bolte-Pauwels 2019))

A set valued mapping Dg : R” = R" is a conservative field (or
conservative Jacobian) for F : R” — R locally Lipschitz if:

@ For all x € R", De(x) is nonempty (ideally convex!).
© Dr has a closed graph and is locally bounded.
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Conservative Fields

Definition (Conservative field (Bolte-Pauwels 2019))

A set valued mapping Dg : R” = R" is a conservative field (or
conservative Jacobian) for F : R” — R locally Lipschitz if:

@ For all x € R", De(x) is nonempty (ideally convex!).
© Dr has a closed graph and is locally bounded.
© For any absolutely continuous curve 7 : [0,1] — R”,

CF( ()= A Vue Dr(x(1)

for almost all ¢ € [0, 1].
We call F path differentiable.
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Path Differentiable Nonsmooth Implicit Function Theorem

Let F:R" x R™ — R™ be path differentiable and
(X,y) € R" x R™ be such that

F(%,9)=0.
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Path Differentiable Nonsmooth Implicit Function Theorem

Let F:R" x R™ — R™ be path differentiable and
(X,y) € R" x R™ be such that

F(%,9)=0.

Assume Dg (%, 9) is convex and V[A B] € Dg (X,7), B is
invertible.
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Path Differentiable Nonsmooth Implicit Function Theorem

Let F:R" x R™ — R™ be path differentiable and
(X,y) € R" x R™ be such that

F(x,y)=0.
Assume Dg (%, 9) is convex and V[A B] € Dg (X,7), B is
invertible.

Then 3U C R" a neighborhood of X and a path differentiable
function G such that

Vxe U F(x,G(x)) = 0.
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Path Differentiable Nonsmooth Implicit Function Theorem

Let F:R" x R™ — R™ be path differentiable and
(X,y) € R" x R™ be such that

F(%,9)=0.
Assume Dg (%, 9) is convex and V[A B] € Dg (X,7), B is
invertible.
Then 3U C R" a neighborhood of X and a path differentiable
function G such that
Vxe U F(x,G(x)) = 0.

The conservative Jacobian of G is given by

DG (x)={-B*A:[AB] € Dr(x,G(x))}.
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Deep Learning with Implicit Layers

x »| Y :F(x,y7)=0 z* €argmin, G(z,¥*) | g ...

Implicit Layer Optimization Layer

@ Deep equilibrium networks [Shaojie Bai, J. Zico Kolter, Vladlen
Koltun 2019], Monotone deep equlibirium networks [Ezra
Winston, J. Zico Kolter 2020].

e Optimization layers (OptNET) [Brandon Amos, J. Zico Kolter
2017].
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Deep Learning with Implicit Layers

x | Y :F(z,y*)=0 z* €argmin, G(z,¥*) | g ...
Implicit Layer Optimization Layer
@ Deep equilibrium networks [Shaojie Bai, J. Zico Kolter, Vladlen

Koltun 2019], Monotone deep equlibirium networks [Ezra
Winston, J. Zico Kolter 2020].

Optimization layers (OptNET) [Brandon Amos, J. Zico Kolter
2017].

Convergence guarantees for training.
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Pathological Examples - Cycles

Gradient descent type algorithm (using backprop) applied to:

min  £(x,y,s) o (x — 51)2 +4(y— 52)2

X7y75

st. scargmax{(a+b)(—2x+y+2):a€][0,3],b<c[0,5]}.

— 40.000 e initial point
—— gradient flow
_2 E T T T T -
-2 0 2 4
X X
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Pathological Examples - Lorenz Attractor

For u € R3, define L(u) = (10(y — x),x(28 — 2) — y,xy — $2).

Implicit formulation
Explicit (vanilla) formulati

max uTz s.t.

ueRs 4 max u” L(u)
z cargmin ||s — L(u)|| u€R3
seR3

Lorenz attractor Implicit gradient ascent Vanilla gradient ascent

40¢ 1.0
300 0.8
200 06
100

0.4

200 200

100200300 200

x 400 0
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Jéréme Bolte,



Thanks for Listening

Thanks for listening.
Full paper available on arxiv: https://arxiv.org/abs/ 2106.04350

“Nonsmooth Implicit Differentiation for Machine Learning and
Optimization” - Jéréme Bolte, Ngoc Tém L&, Edouard Pauwels,
Antonio Silveti-Falls
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