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History and Motivation

@ 1956 Marguerite Frank and
Philip Wolfe: An algorithm
for quadratic programming.
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History and Motivation

@ 1956 Marguerite Frank and
Philip Wolfe: An algorithm
for quadratic programming.

e Considered the following

problem:
min  f(x)
x€DCRn
@ D is a convex, compact set
and f is Lipschitz-smooth.
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The Frank-Wolfe Algorithm

Algorithm: Frank-Wolfe (Con-
ditional Gradient)

Input: xg € D.
k=20
repeat

Tk = k 5

Sk € Argmln (VFf(xx),s)
€D

Xk+1 _Xk _’Yk( k—Sk)
k< k+1
until convergence;

Output: Xg41-

(Credit: Stephanie
Stutz/Wikipedia)
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Frank-Wolfe for sparse optimizaiton
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Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization
Methods for Machine Learning

@ Curvature constant:

Cr = sup S(Fy)—f(x) =y —x,VF(x))
X,z€
v€l0,1]
y=vz+(1-7)x

We call Df (y,x) =f (y) — f(x) — (y — x, VF (x)) the
Bregman divergance associated to f.
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Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization
Methods for Machine Learning

@ Curvature constant:

Cr = sup S(Fy)—f(x) =y —x,VF(x))
X,z€
v€l0,1]
y=vz+(1-7)x

We call Df (y,x) =f (y) — f(x) — (y — x, VF (x)) the
Bregman divergance associated to f.

e Bounded by the Lipschitz constant Lf of V£ on D:
Vx,y €D, |[VF(x)=VF(y)ll <Lellx—yl
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
@ The set D might not admit easy projections.
o Nuclear norm |-]|, of a matrix (¢* norm on singular values).
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
@ The set D might not admit easy projections.
o Nuclear norm ||-||, of a matrix (¢! norm on singular values).
@ The updates of Frank-Wolfe maintain structure.
e Useful when D is atomically generated, i.e.
D = conv(ay,...a;).
e Sparsity, low-rank, etc.
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Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?

@ The set D might not admit easy projections.

o Nuclear norm ||-||, of a matrix (¢! norm on singular values).
@ The updates of Frank-Wolfe maintain structure.

e Useful when D is atomically generated, i.e.

D = conv(ay,...a;).

e Sparsity, low-rank, etc.

@ The iterates are always feasible, i.e. x, € D for all k € N.

£1 ball £ ball
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Limitations of classical Frank-Wolfe/Conditional Gradient

@ Lipschitz-smoothness can be a strong assumption.
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Limitations of classical Frank-Wolfe/Conditional Gradient

@ Lipschitz-smoothness can be a strong assumption.

@ Not able to handle nonsmooth problems.
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Limitations of classical Frank-Wolfe/Conditional Gradient

@ Lipschitz-smoothness can be a strong assumption.
@ Not able to handle nonsmooth problems.

e Affine constraints are not handled in a straightforward way if
the intersection of the affine constraint and the set D is not

simple.

g

GREYC

Antonio Silveti-Falls The CGALP Algorithm



Modern Problem

Classical problem (R"):

Lnelgf(x)

o f is Lipschitz-smooth.

o D C R" is convex, compact.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
Lnelgf(x) An)?l:nbf(x)+(go T)(x)+ h(x)

o f is Lipschitz-smooth.

o D C R" is convex, compact.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
" .
min  (x) min £ (x) + (g 0 T) (x) + h(x)
o f is Lipschitz-smooth. e f is relatively smooth.

o D C R" is convex, compact.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):

Lneilr;f(x) Aminbf(x)+(go T)(x)+ h(x)

X=

@ f is Lipschitz-smooth. o f is relatively smooth.

e D C R" is convex, compact. e domh (= D) is compact.

@ h is Lipschitz-continuous.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
" .
min  (x) min £ (x) + (g © T) () + h(x)
@ f is Lipschitz-smooth. o f is relatively smooth.
e D C R" is convex, compact. e domh (= D) is compact.

@ h is Lipschitz-continuous.

® prox, is accessible.
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Modern Problem

Classical problem (R"): Modern problem (Hilbert space):
" .
min  (x) min £ (x) + (g © T) () + h(x)
@ f is Lipschitz-smooth. o f is relatively smooth.
e D C R" is convex, compact. e domh (= D) is compact.

@ h is Lipschitz-continuous.
® prox, is accessible.

@ T and A are bounded linear
operators. -t
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Relative Smoothness

Let F: H — RU{+o0} and ¢ :]0,1] — Ry. The pair (f,D),
where f : H — RU {400} and D C dom(f), is said to be
(F, ¢)-smooth if there exists an open set Dy such that
D C Dy C int (dom (F)) and

@ F and f are differentiable on Dy;

@ [ —f is convex on Dy;

@ The following holds,

De(z, x)

K = sup —_—
(F.6.P) x,s€D; v€]0,1] C (’7)

z=x+v(s—x)

< +o00.

K(F ) is a far-reaching generalization of the standard curvature

constant. h“
GREYC

Antonio Silveti-Falls The CGALP Algorithm



Moreau-Yosida Regularization

Given a closed, convex, proper function g, the Moreau envelope
(Moreau-Yosida regularization) of g is,

g (x) = ming () + 55 I - I
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Moreau-Yosida Regularization

Given a closed, convex, proper function g, the Moreau envelope
(Moreau-Yosida regularization) of g is,

g (x) = ming () + 55 I - I

@ The Moreau envelope is always Lipschitz-smooth.
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Moreau-Yosida Regularization

Given a closed, convex, proper function g, the Moreau envelope
(Moreau-Yosida regularization) of g is,

g (x) = ming () + 55 I - I

@ The Moreau envelope is always Lipschitz-smooth.
@ Gradient is given by,

X — prox g, (x)

Vgﬁ x) =
(x) 5
The proximal operator associated to g with parameter (3 is given by,
. 1 2 Pt
prox g (x) = Argmin g (y) + 2 [[x =yl g
Y GREYC
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What about the affine constraint Ax = b?

o Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min f (x) = minmaxf (x) + (u, Ax — b)
Ax=b X o

which admits a so-called dual problem,

max min f (x) + (i, Ax — b)
nooox
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What about the affine constraint Ax = b?

o Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min f (x) = minmaxf (x) + (u, Ax — b)
Ax=b X o

which admits a so-called dual problem,

max min f (x) + (i, Ax — b)
nooox

e Augmented Lagrangian problem,

min f (x) = minmaxf (x) + (u, Ax — b) + g | Ax — b||?
m

Ax=b X

g
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The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat

until convergence;
Output: Xk41.




The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)

)
til convergence; h‘
until convergen G
Output: Xk41.
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The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)
sk € Argming {h(s) + (zx,s)}

until convergence;
Output: Xk41.




The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and

Proximal-step (CGALP)

Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:
(0k)ken » (PK)ken € O+

k=0.
repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)
sk € Argming {h(s) + (zx,s)}

Xk+1 = Xk — Yk (Xk - Sk)

until convergence;
Output: Xk41.




The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)
Input: xp € D = dom (h); po € ran(A); (vi)ken: (Bk)ken:

(OK) ken » (PK) ke € Uy
k =0.

repeat
Yk = proxg, o (Tx)

z = Vi(xk)+ T (Txk — yk) / Bk + A* g + pA* (Axx — b)
sk € Argming {h(s) + (zx,s)}

Xk+1 = Xk — Yk (Xk - Sk)
Pkt1 = ok + Ok (Axky1 — b)
k+— k+1

)
til convergence; h‘
until convergen G
Output: Xk41.
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Asymptotic Feasibility

Let (xk),cn be the sequence of primal iterates generated by
CGALP . Then,

@ Axj converges strongly to b, i.e.,

||Axk — b|| =0

lim
k— o0
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Asymptotic Feasibility Rate

@ Pointwise rate:

. 1
ot 14x ] =0 ()

Furthermore, 3 a subsequence (ka)jeN such that

1
I'kj7

[[Axi; — b <
where [, = Zf'(:o ;.
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Asymptotic Feasibility Rate

@ Pointwise rate:

. 1
ot 14x ] =0 ()

Furthermore, 3 a subsequence (ka)jeN such that

1
Ax,. — b|| < ——,
I bl
where [, = Zf'(:o ;.
e Ergodic rate: let X, = Zf‘(:o ~ixi/T k. Then

o1
HAXk—bn—O( m) 2
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Convergence to Optimality

Theorem

Let (xi)xen be the sequence of primal iterates generated by
CGALP, (uk)en the sequence of dual iterates, and (x*, jui*) a
saddle-point pair for the Lagrangian. Then the following holds,
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Convergence to Optimality

Theorem

Let (xi)xen be the sequence of primal iterates generated by

CGALP, (uk)en the sequence of dual iterates, and (x*, jui*) a

saddle-point pair for the Lagrangian. Then the following holds,
e Convergence of the Lagrangian:

lim L (xk, pu*) = L(x*, 1)
k—o0
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Convergence to Optimality

Theorem

Let (xi)xen be the sequence of primal iterates generated by

CGALP, (uk)en the sequence of dual iterates, and (x*, jui*) a

saddle-point pair for the Lagrangian. Then the following holds,
e Convergence of the Lagrangian:

lim L (xk, pu*) = L(x*, 1)
k—o0

o Every weak cluster point X of (xi),c Is a solution of the
primal problem and (1), is bounded.

GREYC
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Lagrangian Convergence Rate

@ Pointwise rate:
. * * ok 1
Oér;gkﬁ(x,,u )—L(x*u)=0 (U)

Furthermore, 3 a subsequence (ka)jeN such that

£ (g ) — £ 1) < £
)
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Lagrangian Convergence Rate

@ Pointwise rate:
. * * ok 1
Oér;gkﬁ(x,,u )—L(x*u)=0 (U)

Furthermore, 3 a subsequence (ka)jeN such that

£ (g ) — £ 1) < £
)

e Ergodic rate: let X, = Zf'(:o ~ixi+1/T k. Then
= * * * 1
L (X, ) = L(x",p7) = O <Fk>
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Simple Projection Problem

05

. 2
min X —
pmin, lbx =yl

e
Ax=0 GREYC
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Lagrangian Convergence Rate

LR, 1) = L£x*,p1")

10° 10t 10? 103 104

Ergodic convergence profile for various step size choices,

2 =¥,
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Matrix Completion Problem

Consider the following matrix completion problem,

cmin 19X =yl XL < 0 [IX T < 52
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Matrix Completion Problem

Consider the following matrix completion problem,

cmin 19X =yl XL < 0 [IX T < 52

Lift to a product space for CGALP :
min _{G(QX)+ H(X): N,. X =0}

Xe(RMxN)?
with
o100) = (Joxt) -, [ ]
and
H(X) = 1 <X(1)) + g (X(z)) ;f‘
GREYC
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Direction Finding Step (2 components)

Slgl) € Argmin

<Q* <QX,E1) -y - PrOX%”.Hl (QX/SI) 7y))
B

+ % (uﬁl) — 1?2 + o (Xk(l) - Xk(2)>) ,5(1)>

5,£2) € Argmin

5@ B
Il

<Q* (QX,EZ) —y = proxg (Qxéz) - y))
Bk

+ % (uf) — 1+ px (Xk(z) - Xk(l))) , 5(2)>

g
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CGALP Ergodic Convergence Rate

LK u')—Lx",u")

g
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Ergodic convergence profiles for CGALP.



@ Stochastic setting: noise on V£, noise on proxgg, noise on
linear minimization oracle.
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@ Stochastic setting: noise on V£, noise on proxgg, noise on
linear minimization oracle.

e Almost sure feasibility, almost sure convergence of Lagrangian
to optimal value, almost sure weak convergence of (k)¢ to
solution of the dual problem, almost sure rates, etc.
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@ Stochastic setting: noise on V£, noise on proxgg, noise on
linear minimization oracle.

e Almost sure feasibility, almost sure convergence of Lagrangian
to optimal value, almost sure weak convergence of (k)¢ to
solution of the dual problem, almost sure rates, etc.

@ (Reflexive) Banach space setting: applicable to more general
g
problems.

e
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Thanks for listening

Thanks for listening.
Full paper available on arxiv: https://arxiv.org/abs/ 1901.01287

"Generalized Conditional Gradient with Augmented Lagrangian for
Composite Minimization" - Antonio Silveti-Falls, Cesare Molinari,
Jalal Fadili.
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