
Generalized Conditional Gradient with Augmented
Lagrangian for Composite Minimization

Antonio Silveti-Falls
(Joint work with Cesare Molinari and Jalal Fadili)

SPARS 2019

Antonio Silveti-Falls The CGALP Algorithm

History and Motivation

1956 Marguerite Frank and
Philip Wolfe: An algorithm

for quadratic programming.

Considered the following
problem:

min
x∈D⊂Rn

f (x)

D is a convex, compact set
and f is Lipschitz-smooth.

Antonio Silveti-Falls The CGALP Algorithm

History and Motivation

1956 Marguerite Frank and
Philip Wolfe: An algorithm

for quadratic programming.

Considered the following
problem:

min
x∈D⊂Rn

f (x)

D is a convex, compact set
and f is Lipschitz-smooth.

Antonio Silveti-Falls The CGALP Algorithm

The Frank-Wolfe Algorithm

Algorithm: Frank-Wolfe (Con-
ditional Gradient)

Input: x0 ∈ D.
k = 0
repeat

γk = 1

k+2

sk ∈ Argmin
s∈D

⟨∇f (xk) , s⟩

xk+1 = xk − γk (xk − sk)
k ← k + 1

until convergence;
Output: xk+1.

(Credit: Stephanie
Stutz/Wikipedia)

Antonio Silveti-Falls The CGALP Algorithm

Frank-Wolfe for sparse optimizaiton

min
∥x∥1≤1

∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization

Methods for Machine Learning

Curvature constant:

Cf = sup
x ,z∈D
γ∈[0,1]

y=γz+(1−γ)x

2

γ2
(f (y)− f (x)− ⟨y − x ,∇f (x)⟩)

We call Df (y , x) = f (y)− f (x)− ⟨y − x ,∇f (x)⟩ the
Bregman divergance associated to f .

Bounded by the Lipschitz constant Lf of ∇f on D:

∀x , y ∈ D, ∥∇f (x)−∇f (y)∥ ≤ Lf ∥x − y∥

Antonio Silveti-Falls The CGALP Algorithm

Assumptions for Frank-Wolfe

2011 Martin Jaggi PhD Thesis: Sparse Convex Optimization

Methods for Machine Learning

Curvature constant:

Cf = sup
x ,z∈D
γ∈[0,1]

y=γz+(1−γ)x

2

γ2
(f (y)− f (x)− ⟨y − x ,∇f (x)⟩)

We call Df (y , x) = f (y)− f (x)− ⟨y − x ,∇f (x)⟩ the
Bregman divergance associated to f .

Bounded by the Lipschitz constant Lf of ∇f on D:

∀x , y ∈ D, ∥∇f (x)−∇f (y)∥ ≤ Lf ∥x − y∥

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?

The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.

Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?

The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.

Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.
Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

a0

a1

a2

a3

ℓ1 ball
a0a1

a2 a3

ℓ∞ ball

Antonio Silveti-Falls The CGALP Algorithm

Advantages of Frank-Wolfe

Question: why not just do projected gradient descent?
The set D might not admit easy projections.

Nuclear norm ∥·∥∗ of a matrix (ℓ1 norm on singular values).

The updates of Frank-Wolfe maintain structure.
Useful when D is atomically generated, i.e.
D = conv (a1, . . . aj).
Sparsity, low-rank, etc.

The iterates are always feasible, i.e. xk ∈ D for all k ∈ N.

a0

a1

a2

a3

ℓ1 ball
a0a1

a2 a3

ℓ∞ ball

Antonio Silveti-Falls The CGALP Algorithm

Limitations of classical Frank-Wolfe/Conditional Gradient

Lipschitz-smoothness can be a strong assumption.

Not able to handle nonsmooth problems.

A�ne constraints are not handled in a straightforward way if
the intersection of the a�ne constraint and the set D is not
simple.

Antonio Silveti-Falls The CGALP Algorithm

Limitations of classical Frank-Wolfe/Conditional Gradient

Lipschitz-smoothness can be a strong assumption.

Not able to handle nonsmooth problems.

A�ne constraints are not handled in a straightforward way if
the intersection of the a�ne constraint and the set D is not
simple.

Antonio Silveti-Falls The CGALP Algorithm

Limitations of classical Frank-Wolfe/Conditional Gradient

Lipschitz-smoothness can be a strong assumption.

Not able to handle nonsmooth problems.

A�ne constraints are not handled in a straightforward way if
the intersection of the a�ne constraint and the set D is not
simple.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T and A are bounded linear
operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T and A are bounded linear
operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T and A are bounded linear
operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T and A are bounded linear
operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T and A are bounded linear
operators.

Antonio Silveti-Falls The CGALP Algorithm

Modern Problem

Classical problem (Rn):

min
x∈D

f (x)

f is Lipschitz-smooth.

D ⊂ Rn is convex, compact.

Modern problem (Hilbert space):

min
Ax=b

f (x) + (g ◦ T) (x) + h (x)

f is relatively smooth.

domh (= D) is compact.

h is Lipschitz-continuous.

proxg is accessible.

T and A are bounded linear
operators.

Antonio Silveti-Falls The CGALP Algorithm

Relative Smoothness

Let F : H → R ∪ {+∞} and ζ :]0, 1]→ R+. The pair (f ,D),
where f : H → R ∪ {+∞} and D ⊂ dom(f), is said to be
(F , ζ)-smooth if there exists an open set D0 such that
D ⊂ D0 ⊂ int (dom (F)) and

F and f are di�erentiable on D0;

F − f is convex on D0;

The following holds,

K(F ,ζ,D) = sup
x ,s∈D; γ∈]0,1]
z=x+γ(s−x)

DF (z , x)

ζ (γ)
< +∞.

K(F ,ζ,C) is a far-reaching generalization of the standard curvature
constant.

Antonio Silveti-Falls The CGALP Algorithm

Moreau-Yosida Regularization

Given a closed, convex, proper function g , the Moreau envelope
(Moreau-Yosida regularization) of g is,

gβ (x) = min
y

g (y) +
1

2β
∥x − y∥2

The Moreau envelope is always Lipschitz-smooth.

Gradient is given by,

∇gβ (x) =
x − proxβg (x)

β

The proximal operator associated to g with parameter β is given by,

proxβg (x) = Argmin
y

g (y) +
1

2β
∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Moreau-Yosida Regularization

Given a closed, convex, proper function g , the Moreau envelope
(Moreau-Yosida regularization) of g is,

gβ (x) = min
y

g (y) +
1

2β
∥x − y∥2

The Moreau envelope is always Lipschitz-smooth.

Gradient is given by,

∇gβ (x) =
x − proxβg (x)

β

The proximal operator associated to g with parameter β is given by,

proxβg (x) = Argmin
y

g (y) +
1

2β
∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Moreau-Yosida Regularization

Given a closed, convex, proper function g , the Moreau envelope
(Moreau-Yosida regularization) of g is,

gβ (x) = min
y

g (y) +
1

2β
∥x − y∥2

The Moreau envelope is always Lipschitz-smooth.

Gradient is given by,

∇gβ (x) =
x − proxβg (x)

β

The proximal operator associated to g with parameter β is given by,

proxβg (x) = Argmin
y

g (y) +
1

2β
∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

What about the a�ne constraint Ax = b?

Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩

which admits a so-called dual problem,

max
µ

min
x

f (x) + ⟨µ,Ax − b⟩

Augmented Lagrangian problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩ + ρ

2
∥Ax − b∥2

Antonio Silveti-Falls The CGALP Algorithm

What about the a�ne constraint Ax = b?

Constrained optimization problems can be reformulated as a
Lagrangian saddle point problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩

which admits a so-called dual problem,

max
µ

min
x

f (x) + ⟨µ,Ax − b⟩

Augmented Lagrangian problem,

min
Ax=b

f (x) = min
x

max
µ

f (x) + ⟨µ,Ax − b⟩ + ρ

2
∥Ax − b∥2

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

The CGALP Algorithm

Algorithm: Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP)

Input: x0 ∈ D = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N,
(θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0.
repeat

yk = proxβkg
(Txk)

zk = ∇f (xk) +T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins {h (s) + ⟨zk , s⟩}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility

Theorem

Let (xk)k∈N be the sequence of primal iterates generated by

CGALP . Then,

Axk converges strongly to b, i.e.,

lim
k→∞

∥Axk − b∥ = 0

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility Rate

Pointwise rate:

inf
0≤i≤k

∥Axi − b∥ = O

(
1√
Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

∥Axkj − b∥ ≤ 1√
Γkj

,

where Γk =
∑k

i=0
γi .

Ergodic rate: let x̄k =
∑k

i=0
γixi/Γk . Then

∥Ax̄k − b∥ = O

(
1√
Γk

)

Antonio Silveti-Falls The CGALP Algorithm

Asymptotic Feasibility Rate

Pointwise rate:

inf
0≤i≤k

∥Axi − b∥ = O

(
1√
Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

∥Axkj − b∥ ≤ 1√
Γkj

,

where Γk =
∑k

i=0
γi .

Ergodic rate: let x̄k =
∑k

i=0
γixi/Γk . Then

∥Ax̄k − b∥ = O

(
1√
Γk

)

Antonio Silveti-Falls The CGALP Algorithm

Convergence to Optimality

Theorem

Let (xk)k∈N be the sequence of primal iterates generated by

CGALP , (µk)k∈N the sequence of dual iterates, and (x⋆, µ⋆) a
saddle-point pair for the Lagrangian. Then the following holds,

Convergence of the Lagrangian:

lim
k→∞

L (xk , µ⋆) = L (x⋆, µ⋆)

Every weak cluster point x̃ of (xk)k∈N is a solution of the

primal problem and (µk)k∈N is bounded.

Antonio Silveti-Falls The CGALP Algorithm

Convergence to Optimality

Theorem

Let (xk)k∈N be the sequence of primal iterates generated by

CGALP , (µk)k∈N the sequence of dual iterates, and (x⋆, µ⋆) a
saddle-point pair for the Lagrangian. Then the following holds,

Convergence of the Lagrangian:

lim
k→∞

L (xk , µ⋆) = L (x⋆, µ⋆)

Every weak cluster point x̃ of (xk)k∈N is a solution of the

primal problem and (µk)k∈N is bounded.

Antonio Silveti-Falls The CGALP Algorithm

Convergence to Optimality

Theorem

Let (xk)k∈N be the sequence of primal iterates generated by

CGALP , (µk)k∈N the sequence of dual iterates, and (x⋆, µ⋆) a
saddle-point pair for the Lagrangian. Then the following holds,

Convergence of the Lagrangian:

lim
k→∞

L (xk , µ⋆) = L (x⋆, µ⋆)

Every weak cluster point x̃ of (xk)k∈N is a solution of the

primal problem and (µk)k∈N is bounded.

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

Pointwise rate:

inf
0≤i≤k

L (xi , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

L
(
xkj+1, µ

⋆
)
− L (x⋆, µ⋆) ≤ 1

Γkj

Ergodic rate: let x̄k =
∑k

i=0
γixi+1/Γk . Then

L (x̄k , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

Pointwise rate:

inf
0≤i≤k

L (xi , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
Furthermore, ∃ a subsequence

(
xkj

)
j∈N such that

L
(
xkj+1, µ

⋆
)
− L (x⋆, µ⋆) ≤ 1

Γkj

Ergodic rate: let x̄k =
∑k

i=0
γixi+1/Γk . Then

L (x̄k , µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)

Antonio Silveti-Falls The CGALP Algorithm

Simple Projection Problem

min
∥x∥1≤1

Ax=0

∥x − y∥2

Antonio Silveti-Falls The CGALP Algorithm

Lagrangian Convergence Rate

100 101 102 103 104
k

10−3

10−2

10−1

100

(
̄x k
,μ

* ̄
−

(x

* ,
μ
* ̄

μ(1
log(k+2̄)

μ(1
(k+2̄b)

a= b=0
a=0, b=0.32333
a=1, b=0.32333

Ergodic convergence pro�le for various step size choices,

θk = γk =
(log (k + 2))a

(k + 1)1−b
, ρ = 22−b + 1

Antonio Silveti-Falls The CGALP Algorithm

Matrix Completion Problem

Consider the following matrix completion problem,

min
X∈RN×N

{
∥ΩX − y∥

1
: ∥X∥∗ ≤ δ1, ∥X∥1 ≤ δ2

}

Lift to a product space for CGALP :

min
X∈(RN×N)

2

{
G (ΩX) + H(X) : ΠV⊥X = 0

}
with

G (ΩX) =
1

2

(∥∥∥ΩX (1) − y
∥∥∥
1

+
∥∥∥ΩX (2) − y

∥∥∥
1

)
and

H(X) = ιBδ1
∗

(
X (1)

)
+ ιBδ2

1

(
X (2)

)

Antonio Silveti-Falls The CGALP Algorithm

Matrix Completion Problem

Consider the following matrix completion problem,

min
X∈RN×N

{
∥ΩX − y∥

1
: ∥X∥∗ ≤ δ1, ∥X∥1 ≤ δ2

}
Lift to a product space for CGALP :

min
X∈(RN×N)

2

{
G (ΩX) + H(X) : ΠV⊥X = 0

}
with

G (ΩX) =
1

2

(∥∥∥ΩX (1) − y
∥∥∥
1

+
∥∥∥ΩX (2) − y

∥∥∥
1

)
and

H(X) = ιBδ1
∗

(
X (1)

)
+ ιBδ2

1

(
X (2)

)
Antonio Silveti-Falls The CGALP Algorithm

Direction Finding Step (2 components)

S
(1)
k ∈ Argmin

S(1)∈Bδ1
∥·∥∗

〈
Ω∗

(
ΩX

(1)
k − y − prox βk

2
∥·∥1

(
ΩX

(1)
k − y

))
βk

+
1

2

(
µ
(1)
k − µ

(2)
k + ρk

(
X

(1)
k − X

(2)
k

))
,S (1)

〉

S
(2)
k ∈ Argmin

S(2)∈Bδ2
∥·∥1

〈
Ω∗

(
ΩX

(2)
k − y − prox βk

2
∥·∥1

(
ΩX

(2)
k − y

))
βk

+
1

2

(
µ
(2)
k − µ

(1)
k + ρk

(
X

(2)
k − X

(1)
k

))
,S (2)

〉

Antonio Silveti-Falls The CGALP Algorithm

CGALP Ergodic Convergence Rate

100 101 102 103

k

100

101

102


(X̄

k,
μ

*)
−

(X

* ,
μ

*)

μ(1
log(k))

N̄=̄128
N̄=̄64
N̄=̄32

Ergodic convergence pro�les for CGALP.

Antonio Silveti-Falls The CGALP Algorithm

Future Work

Stochastic setting: noise on ∇f , noise on proxβg , noise on
linear minimization oracle.

Almost sure feasibility, almost sure convergence of Lagrangian
to optimal value, almost sure weak convergence of (µk)k∈N to
solution of the dual problem, almost sure rates, etc.

(Re�exive) Banach space setting: applicable to more general
problems.

Antonio Silveti-Falls The CGALP Algorithm

Future Work

Stochastic setting: noise on ∇f , noise on proxβg , noise on
linear minimization oracle.

Almost sure feasibility, almost sure convergence of Lagrangian
to optimal value, almost sure weak convergence of (µk)k∈N to
solution of the dual problem, almost sure rates, etc.

(Re�exive) Banach space setting: applicable to more general
problems.

Antonio Silveti-Falls The CGALP Algorithm

Future Work

Stochastic setting: noise on ∇f , noise on proxβg , noise on
linear minimization oracle.

Almost sure feasibility, almost sure convergence of Lagrangian
to optimal value, almost sure weak convergence of (µk)k∈N to
solution of the dual problem, almost sure rates, etc.

(Re�exive) Banach space setting: applicable to more general
problems.

Antonio Silveti-Falls The CGALP Algorithm

Thanks for listening

Thanks for listening.

Full paper available on arxiv: https://arxiv.org/abs/ 1901.01287

"Generalized Conditional Gradient with Augmented Lagrangian for
Composite Minimization" - Antonio Silveti-Falls, Cesare Molinari,

Jalal Fadili.

Antonio Silveti-Falls The CGALP Algorithm

